Home
Class 12
MATHS
Let D1=|a b a+b c d c+d a b a-b|a n dD2=...

Let `D_1=|a b a+b c d c+d a b a-b|a n dD_2=|a c a+c b d b+d a c a+b+c|` then the value of `|(D_1)/(D_2)|,w h e r eb!=0a n da d!=b c ,` is _____.

Text Solution

Verified by Experts

The correct Answer is:
2

Using `C_(3) to C_(3) -(C_(1)+C_(2))" in " D_(1) " and" D_(2) ` we have
`(D_(1))/(D_(2)) =(-2b(ad-bc))/(b(ad-bc)) =-2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let D_(1)=det[[a,b,a+bc,d,c+da,b,a-b]] and D_(2)=det[[a,c,a+cb,d,b+da,c,a+b+c]]|(D_(1))/(D_(2))|, where b!=0 and ad!=bc, is

If A=[[a,b] , [c,d]] and B=[[a',b] , [c',d']] then find the value of A-B

a,b,c,in N and d = |{:(a,b,c),(c,a,b),(b,c,a):}| , then the least positive value of D is

If D=|[a,b,c], [c,a,b], [b,c,a]| and D'=|[b+c, c+a, a+b], [a+b, b+c, c+a], [c+a, a+b, b+c]|, then prove that D' = 2D

If a : b=5:7 a n d c : d=2a :3b , t h e n a c : b d is 10 : 21 b. 20 : 38 c. 50 : 147 d. 50 : 151

A ,B ,Ca n dD have position vectors vec a , vec b , vec ca n d vec d , respectively, such that vec a- vec b=2( vec d- vec c)dot Then a. A Ba n dC D bisect each other b. B Da n dA C bisect each other c. A Ba n dC D trisect each other d. B Da n dA C trisect each other