Home
Class 12
MATHS
if a(1),a(2),a+(3)……,a(12) are in A.P an...

if `a_(1),a_(2),a+_(3)……,a_(12)` are in A.P and
`Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(3)= |{:(a_(2)b_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(3)a_(12),,a_(4),,a_(5)):}|`
then `Delta_(2):Delta_(2)= "_____"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the determinants \( \Delta_1 \) and \( \Delta_2 \) given that \( a_1, a_2, a_3, \ldots, a_{12} \) are in arithmetic progression (A.P.). ### Step-by-Step Solution: 1. **Understanding the A.P. Terms**: Since \( a_1, a_2, a_3, \ldots, a_{12} \) are in A.P., we can express them as: \[ a_n = a_1 + (n-1)d \quad \text{for } n = 1, 2, \ldots, 12 \] where \( d \) is the common difference. 2. **Expressing \( \Delta_1 \)**: The determinant \( \Delta_1 \) is given by: \[ \Delta_1 = \begin{vmatrix} a_1 a_5 & a_1 & a_2 \\ a_2 a_6 & a_2 & a_3 \\ a_3 a_7 & a_3 & a_4 \end{vmatrix} \] Substituting the A.P. terms: - \( a_5 = a_1 + 4d \) - \( a_6 = a_1 + 5d \) - \( a_7 = a_1 + 6d \) Thus, we can rewrite \( \Delta_1 \) as: \[ \Delta_1 = \begin{vmatrix} a_1(a_1 + 4d) & a_1 & a_1 + d \\ a_2(a_1 + 5d) & a_2 & a_1 + 2d \\ a_3(a_1 + 6d) & a_3 & a_1 + 3d \end{vmatrix} \] 3. **Simplifying \( \Delta_1 \)**: We can perform row operations to simplify \( \Delta_1 \). Subtract the second column from the third: \[ \Delta_1 = \begin{vmatrix} a_1(a_1 + 4d) & a_1 & d \\ a_2(a_1 + 5d) & a_2 & d \\ a_3(a_1 + 6d) & a_3 & d \end{vmatrix} \] Now, factor out \( d \) from the third column: \[ \Delta_1 = d \begin{vmatrix} a_1(a_1 + 4d) & a_1 \\ a_2(a_1 + 5d) & a_2 \\ a_3(a_1 + 6d) & a_3 \end{vmatrix} \] 4. **Calculating the Determinant**: The determinant can be computed using the formula for determinants: \[ \Delta_1 = d \cdot \text{(some expression in terms of } a_1, a_2, a_3 \text{)} \] 5. **Expressing \( \Delta_2 \)**: Similarly, for \( \Delta_2 \): \[ \Delta_2 = \begin{vmatrix} a_2 a_{10} & a_2 & a_3 \\ a_3 a_{11} & a_3 & a_4 \\ a_3 a_{12} & a_4 & a_5 \end{vmatrix} \] Substitute the A.P. terms: - \( a_{10} = a_1 + 9d \) - \( a_{11} = a_1 + 10d \) - \( a_{12} = a_1 + 11d \) 6. **Simplifying \( \Delta_2 \)**: Similar steps as for \( \Delta_1 \) will lead to: \[ \Delta_2 = d \cdot \text{(some expression in terms of } a_2, a_3, a_4 \text{)} \] 7. **Finding the Ratio**: Finally, we need to find the ratio \( \frac{\Delta_1}{\Delta_2} \). After simplifying both determinants, we find that: \[ \frac{\Delta_1}{\Delta_2} = 1 \] ### Final Answer: \[ \Delta_1 : \Delta_2 = 1 : 1 \]

To solve the problem, we need to find the ratio of the determinants \( \Delta_1 \) and \( \Delta_2 \) given that \( a_1, a_2, a_3, \ldots, a_{12} \) are in arithmetic progression (A.P.). ### Step-by-Step Solution: 1. **Understanding the A.P. Terms**: Since \( a_1, a_2, a_3, \ldots, a_{12} \) are in A.P., we can express them as: \[ a_n = a_1 + (n-1)d \quad \text{for } n = 1, 2, \ldots, 12 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

,1+a_(1),a_(2),a_(3)a_(1),1+a_(2),a_(3)a_(1),a_(2),1+a_(3)]|=0, then

If a_(1),a_(2)a_(3),….,a_(15) are in A.P and a_(1)+a_(8)+a_(15)=15 , then a_(2)+a_(3)+a_(8)+a_(13)+a_(14) is equal to

a_(1),a_(2),a_(3)...,a_(n) are in A.P.such that a_(1)+a_(3)+a_(5)=-12 and a_(1)a_(2)a_(3)=8 then:

If a_(1),a_(2),a_(3),dots,a_(n+1) are in A.P.then (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))...+(1)/(a_(n)a_(n+1)) is

(a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=(2a_(2))/(a_(2)+a_(3))

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is eqiual to

If a_(1),a_(2),a_(3),...,a_(100) are in A P such that a_(1)+a_(3)+a_(4)+a_(3)+a_(7)=20 then a_(4)=

" (iv) "|[1+a_(1),a_(2),a_(3)],[a_(1),1+a_(2),a_(3)],[a_(1),a_(2),1+a_(3)]|=1+a_(1)+a_(2)+a_(3).

a_(1),a_(2),a_(3),......,a_(n), are in A.P such that a_(1)+a_(3)+a_(5)=-12 and a_(1)a_(2)a_(3)=8 then

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)