Home
Class 12
MATHS
|{:(5sqrt(log(e)3),,5sqrt(log(e)3),,3sqr...

`|{:(5sqrt(log_(e)3),,5sqrt(log_(e)3),,3sqrt(log_(e)3)),(3^(-log_(1//3)4),,(0.1)^(log_(0.01)4),,7^(log_(7)3)),(7,,3,,5):}|" is equal to ""____"`

Text Solution

Verified by Experts

The correct Answer is:
0

`Delta = |{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,3sqrt(log_(3)5)),(3^(-log_(1//3)4),,(0.1)^(log_(0.01)4),,7^(log_(7)3)),(7,,3,,5):}|`
`= |{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,3sqrt(log_(3)5)),(3^(log_(1//3)4),,(0.1)^(log_(0.01)2),,7^(log_(7)3)),(7,,3,,5):}|`
` = |{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,3sqrt(log_(3)5)),(4,,2,,3),(7,,3,,5):}|`
Applying `C_(2) to C_(2) -C_(1) " and " C_(3) to C_(3)-C_(1)` we get
`Delta = |{:(5sqrt(log_(5)3),,0,,0),(4,,-2,,-1),(7,,-4,,-2):}|=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(log_(3)7)=x^(sqrt(log_(7)3))find x

7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

log_(3sqrt(7))2401

3^(log_(3)7)+7^(log_(8)(1/8))+log_(0.3)3

Prove that: (log_(9)11)/(log_(5)3)=(log_(3)11)/(log_(sqrt(5))3)

x=log_(5)3+log_(7)5+log_(9)7