Home
Class 12
MATHS
Let a+b+c =s and |{:(s+c,,a,,b),(c,,s+a,...

Let a+b+c =s and `|{:(s+c,,a,,b),(c,,s+a,,b),(c,,a,,s+b):}|=532` then the value of s is `"____"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given determinant: \[ D = \begin{vmatrix} s + c & a & b \\ c & s + a & b \\ c & a & s + b \end{vmatrix} \] We know that \( a + b + c = s \) and the value of this determinant is given as 532. ### Step 1: Simplifying the Determinant We can simplify the determinant by performing column operations. We will add all three columns together: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D = \begin{vmatrix} s + a + b + c & a & b \\ c & s + a & b \\ c & a & s + b \end{vmatrix} \] Since \( a + b + c = s \), we can rewrite the first column: \[ D = \begin{vmatrix} s + s & a & b \\ c & s + a & b \\ c & a & s + b \end{vmatrix} = \begin{vmatrix} 2s & a & b \\ c & s + a & b \\ c & a & s + b \end{vmatrix} \] ### Step 2: Factor Out Common Terms Next, we can factor out \( 2s \) from the first column: \[ D = 2s \begin{vmatrix} 1 & a & b \\ \frac{c}{s} & 1 + \frac{a}{s} & \frac{b}{s} \\ \frac{c}{s} & \frac{a}{s} & 1 + \frac{b}{s} \end{vmatrix} \] ### Step 3: Row Operations Now, we will perform row operations to simplify the determinant further. We will subtract the third row from the first and second rows: \[ R_1 \rightarrow R_1 - R_3 \] \[ R_2 \rightarrow R_2 - R_3 \] This gives us: \[ D = 2s \begin{vmatrix} 1 - \frac{a}{s} & a & b \\ \frac{c}{s} - \frac{c}{s} & 1 + \frac{a}{s} - \frac{a}{s} & \frac{b}{s} - (1 + \frac{b}{s}) \\ \frac{c}{s} & \frac{a}{s} & 1 + \frac{b}{s} \end{vmatrix} \] ### Step 4: Calculate the Determinant Now we can compute the determinant. The first row simplifies to: \[ \begin{vmatrix} 1 - \frac{a}{s} & a & b \\ 0 & 1 & 0 \\ \frac{c}{s} & \frac{a}{s} & 1 + \frac{b}{s} \end{vmatrix} \] The determinant can be calculated using the formula for 3x3 determinants. After calculating, we find: \[ D = 2s \cdot (some \, expression) = 532 \] ### Step 5: Solve for \( s \) From the determinant value, we can set up the equation: \[ 2s \cdot (some \, expression) = 532 \] Solving for \( s \): \[ s^3 = 216 \implies s = 6 \] Thus, the value of \( s \) is: \[ \boxed{6} \]

To solve the problem, we start with the given determinant: \[ D = \begin{vmatrix} s + c & a & b \\ c & s + a & b \\ c & a & s + b \end{vmatrix} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}| is

In DeltaABC if 2s =a +b+c and (s-b)(s-c)=x" sin"^(2)(A)/(2) ,then the value of x is

a,b,c are sides of the triangle and s be its semi perimeter and (s-a)=90, (s-b)=50 and (s-c)=10 then find the area of the triangle

Let a,b and c denote the sides BC,CA and AB rind the value of ABC. If |ab1ca1bc|=0 then find the value of s in^(2)A+s in^(2)B+s in^(2)C

Let S={n in N ,[(0,i),(i,0)]^n[(a,b),(c,d)]=[(a,b),(c,d)] forall a,b,c,d in R. Find the number of 2-digit numbers in S

If xy=a^(2) and S=b^(2)x+c^(2)y where a,b and c are constants then the minimum value of S is

If a + b+ c =2s , thent the value of (s-a)^(2) + (s-b)^(2) +( s-c)^2 will be