Home
Class 12
MATHS
Which of the following values of alpha s...

Which of the following values of `alpha` satisfying the equation `|(1+alpha)^2(1+2alpha)^2(1+3alpha)^2(2+alpha)^2(2+2alpha)^2(2+3alpha)^2(3+alpha)^2(3+2alpha)^2(3+3alpha)^2|=-648alpha?` `-4` b. `9` c. `-9` d. `4`

A

`-4`

B

`9`

C

`-9`

D

4

Text Solution

Verified by Experts

The correct Answer is:
2,3

Wen have `|{:((1+alpha^(2)),,(1+2alpha)^(2),,(1+3alpha)^(2)),((2+alpha)^(2),,(2+2alpha)^(2),,(2+3alpha)^(2)),((3+alpha)^(2),,(3+2alpha)^(2),,(3+3alpha)^(2)):}|=-648alpha`
Applying `R_(3)to R_(3) -R_(2),R_(2) to R_(2)-R_(1)`
`rArr |{:((1+alpha)^(2),,(1+2alpha)^(2),,(1+3alpha)^(2)),(3+2alpha,,3+4alpha,,3+6alpha),(5+2alpha,,5+4alpha,,5+6alpha):}|=-648alpha`
Applying `R_(3) to R_(3)-R_(2)`
`rArr |{:((1+alpha)^(2),,(1+2alpha)^(2),,(1+3alpha)^(2)),(3+2alpha,,3+4alpha,,3+6alpha),(2,,2,,2):}|=-648alpha`
Applying `C_(3)to C_(3)-C_(2),C_(2)to C_(2)-C_(1)`
`|{:((1+alpha)^(2),,alpha(2+3alpha),,alpha(2+5alpha)),(3+2alpha,,2alpha,,2alpha),(2,,0,,0):}|=-648alpha`
`rArr 2alpha^(2)(2+3alpha)-2alpha^(2)(2+5alpha)=-324alpha`
`rArr -4alpha^(3)=-324alpha`
`rArr alpha=0,+-9`
Promotional Banner

Similar Questions

Explore conceptually related problems

|[(1+alpha)^(2),(1+2 alpha)^(2),(1+3 alpha)^(2)(2+alpha)^(2),(2+2 alpha)^(2),(2+3 alpha)^(2)(3+alpha)^(2),(3+2 alpha)^(2),(3+3 alpha)^(2) Find the value of alpha

Prove that |1alphaalpha^2alphaalpha^2 1alpha^2 1alpha|=-(1-alpha^3)^2dot

alpha=e^((2 pi)/(5)i)then1+alpha+alpha^(2)+alpha^(3)+alpha^(4)+2 alpha^(5)=

If alpha satisfies properties a^(3)=1 and alpha^(2)+alpha+1=0 then (4+5 alpha^(334)+3 alpha^(365))/(alpha-alpha^(2))=

Find the coefficient of alpha^(6) in the product (1+alpha+alpha^(2))(1+alpha+alpha^(2))(1+alpha+alpha^(2)+alpha^(3)) (1+alpha)(1+alpha)(1+alpha) .

If alpha is a root of x^(3)-x-1=0, compute the value of alpha^(10)+2 alpha^(8)-alpha^(7)-3 alpha^(6)-3 alpha^(5)+4 alpha^(4)+2 alpha^(3)-4 alpha^(2)-6 alpha

sin alpha-sin2 alpha+sin3 alpha=4cos(3 alpha)/(2)cos alpha sin(alpha)/(2)

For what value of alpha does the equation 4cosalpha+3cos2alpha-2sin3alpha+cos4alpha=2sqrt(3)-1 hold?

If alpha be a root of equation x^2+x+1=0 then find the vlaue of (alpha+ 1/alpha)+(alpha^2+1/alpha^2)^2+(alpha^3+1/alpha^3)^2+…+(alpha^6+1/alpha^6)^2

Eliminate alpha between the equations : ("sin"^(2)alpha)/(cosalpha)=a^(3) and (cos^(2)alpha)/("sin"alpha)=b^(3)