Home
Class 12
MATHS
If omega is cube roots of unity, prove t...

If `omega` is cube roots of unity, prove that `{[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is the cube root of unity then {:abs((1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)):} is

If omega is a cube root of unity, prove that (1+omega-omega^2)^3-(1-omega+omega^2)^3=0

IF omega is cube root of unity, then |{:(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega):}| = ………. (1,0,omega, omega^2)

If omega is a complex cube root of unity, show that ([[1,omega,omega^2],[omega,omega^2, 1],[omega^2, 1,omega]]+[[omega,omega^2, 1],[omega^2 ,1,omega],[omega,omega^2, 1]])[[1,omega,omega^2]]=[[0, 0 ,0]]

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =

If omega is the cube root of unity, prove that (1-omega+omega^2)^6 + (1+omega-omega^2)^6 = 128

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =