Home
Class 12
MATHS
Given two curves: y=f(x) passing thro...

Given two curves: `y=f(x)` passing through the point `(0,1)` and `g(x)=int_(-oo)^xf(t)dt` passing through the point `(0,1/n)dot` The tangents drawn to both the curves at the points with equal abscissas intersect on the x-axis. Find the curve `y=f(x)dot`

Text Solution

Verified by Experts

Equation of tangent to the curve `y=f(x)` is
`Y-y=f^(')(x)(X-y)`
Equation of tangents to the curve
`g(x) = y_(1)=int_(-infty)^(x) f(t)dt`
is `Y-y_(1) = f(x)(X-x)` `((dy_(1))/(dx) = g^(')(x) = f(x))`
Since, the tangents with equal abscissa intersect on the x-axis,
`x-y/(f^(')(x)) = x-y_(1)/(f(x))`
`(f(x))/(g^(')(x)) = y_(1)/(g^(')(x))`
`(g^(')(x))/(g(x)) = (g^('')(x))/(g^(')(x))`
Integrating both sides,
`"ln "g(x) = "ln "cg^(')(x)`
`g(x) = cg^(')(x)`
or `(g^(')(x))/(g(x)) = c`
Integrating both sides,
`g(x) = ke^(cx)`
`f(x)=g^(')(x) = kce^(cx)`
The curve `y=f(x)` passes through `(0,1)`. Thus, kc=1.
The curve `y=g(x)` passes through `(0,1/n)`. Thus, `k=1/n` or `c=n` or `f(x) = e^(nx)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.1|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.2|6 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

Given two curves: y=f(x) passing through the point (0,1) and g(x)=int_(-oo)^( x)f(t)dt passing through the point (0,(1)/(n)). The tangents drawn to both the curves at the points with equal abscissas intersect on the x - axis.Find the curve y=f(x) .

Given the curves y=f(x) passing through the point (0,1) and y=int_(-oo)^(x) f(t) passing through the point (0,(1)/(2)) The tangents drawn to both the curves at the points with equal abscissae intersect on the x-axis. Then the curve y=f(x), is

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/3) are such that the tangents drawn to them at the point with equal abscissae intersect on x-axis. Answer the question:The area bounded by the curve y=f(x), y=x and ordinates x=0 and x=1 is (A) (e^2-1)/2 (B) (e^2-1)/3 (C) (e^3-1)/3 (D) none of these

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/3) are such that the tangents drawn to them at the point with equal abscissae intersect on x-axis. Answer the question:The equation of curve y=f(x) is (A) y=e^(3x) (B) y=e^(x/3) (C) y=3^x (D) y=1/3^x

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/3) are such that the tangents drawn to them at the point with equal abscissae intersect on x-axis. Answer the question: lim_(xrarr0) ((f(x))^2-1)/x= (A) 3 (B) 6 (C) 4 (D) none of these

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then Number of solutions f(x) = 2ex is equal to

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then The function f(x) is

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then int_(x to oo)(f(x))^f(-x) is

We are given the curvers y=int_(- infty)^(x) f(t) dt through the point (0,(1)/(2)) any y=f(x) , where f(x) gt 0 and f(x) is differentiable , AA x in R through (0,1) Tangents drawn to both the curves at the points with equal abscissae intersect on the same point on the X- axists The number of solutions f(x) =2ex is equal to

We are given the curvers y=int_(- infty)^(x) f(t) dt through the point (0,(1)/(2)) any y=f(x) , where f(x) gt 0 and f(x) is differentiable , AA x in R through (0,1) Tangents drawn to both the curves at the points with equal abscissae intersect on the same point on the X- axists The function f(x) is

CENGAGE-DIFFERENTIAL EQUATIONS-Question Bank
  1. Given two curves: y=f(x) passing through the point (0,1) and g(x)=...

    Text Solution

    |

  2. A function is continuous and differentiable on R0 satisfying x f^(prim...

    Text Solution

    |

  3. A curve y=f(x) is passing through (0,0). If the slope-of the curve at ...

    Text Solution

    |

  4. If y=f(x) satisfies the differential equation (1+x^2) f^(prime)(x)=x(1...

    Text Solution

    |

  5. If y(x) is solution of (x+1) (d y)/(d x)-x y=1, y(0)=-1, then y(-6/5) ...

    Text Solution

    |

  6. Let perpendicular distance of any variable tangent on the curve C fro...

    Text Solution

    |

  7. The number of straight lines which satisfies the differential equation...

    Text Solution

    |

  8. The real valuc of m for which the 'substitution, y=u^m will transform ...

    Text Solution

    |

  9. A function y=f(x) satisfies the differential equation (d y)/(d x)+x^2 ...

    Text Solution

    |

  10. If the differential equation representing the family of curves y=C1 co...

    Text Solution

    |

  11. The family of integral curves of the differential equation (d y)/(d x)...

    Text Solution

    |

  12. If ' e' denotes tho cccentricity of the hyperbola, satisfying the dif...

    Text Solution

    |

  13. A carve y=f(x) passes through O(0,0) and slope of tangent line at any ...

    Text Solution

    |

  14. If y=x sin (ln x) is the solution of x^2((d y)/(d x))^2-(lambda-2) x ...

    Text Solution

    |

  15. Let y=f(x) be drawn with f(0)=2 and for each real number ' a ' the lin...

    Text Solution

    |

  16. If tangent to the curve x y=x^2+1 at (alpha, beta) is normal to the cu...

    Text Solution

    |

  17. If y=y(x) and it follows the relation 4 x e^v=y+5 sin ^2 x then y^prim...

    Text Solution

    |

  18. Given y(0)=2000 and (d y)/(d x)=32000-20 y^2, then find the value of u...

    Text Solution

    |

  19. If the differential equation corresponding to the family of curves, y=...

    Text Solution

    |

  20. A curve in the first quadrant is such that the area of the triangle fo...

    Text Solution

    |

  21. Number of values of m in N for which y=e^(mx) is a solution of the di...

    Text Solution

    |