Home
Class 12
MATHS
Solve (x-y^(2)x)dx=(y-x^(2)y)dy....

Solve `(x-y^(2)x)dx=(y-x^(2)y)dy`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((x - y^2 x)dx = (y - x^2 y)dy\), we will follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ (x - y^2 x)dx = (y - x^2 y)dy \] We can factor out \(x\) from the left side and \(y\) from the right side: \[ x(1 - y^2)dx = y(1 - x^2)dy \] ### Step 2: Separating Variables Next, we will separate the variables by dividing both sides by \(x(1 - y^2)\) and \(y(1 - x^2)\): \[ \frac{dx}{x(1 - x^2)} = \frac{dy}{y(1 - y^2)} \] ### Step 3: Integrating Both Sides Now, we will integrate both sides: \[ \int \frac{dx}{x(1 - x^2)} = \int \frac{dy}{y(1 - y^2)} \] ### Step 4: Using Partial Fraction Decomposition For the left side, we can use partial fraction decomposition: \[ \frac{1}{x(1 - x^2)} = \frac{A}{x} + \frac{Bx + C}{1 - x^2} \] Solving for \(A\), \(B\), and \(C\), we find: \[ \frac{1}{x(1 - x^2)} = \frac{1/2}{x} + \frac{1/2}{1 - x} - \frac{1/2}{1 + x} \] Thus, the integral becomes: \[ \int \left( \frac{1/2}{x} + \frac{1/2}{1 - x} - \frac{1/2}{1 + x} \right) dx \] This results in: \[ \frac{1}{2} \ln |x| - \frac{1}{2} \ln |1 - x| - \frac{1}{2} \ln |1 + x| + C_1 \] For the right side, we can similarly decompose: \[ \frac{1}{y(1 - y^2)} = \frac{1/2}{y} + \frac{1/2}{1 - y} - \frac{1/2}{1 + y} \] Integrating gives: \[ \frac{1}{2} \ln |y| - \frac{1}{2} \ln |1 - y| - \frac{1}{2} \ln |1 + y| + C_2 \] ### Step 5: Equating the Integrals Now we equate the two integrals: \[ \frac{1}{2} \ln |x| - \frac{1}{2} \ln |1 - x| - \frac{1}{2} \ln |1 + x| = \frac{1}{2} \ln |y| - \frac{1}{2} \ln |1 - y| - \frac{1}{2} \ln |1 + y| + C \] ### Step 6: Simplifying the Equation We can simplify this to: \[ \ln \left( \frac{x}{(1 - x)(1 + x)} \right) = \ln \left( \frac{y}{(1 - y)(1 + y)} \right) + C \] Exponentiating both sides gives: \[ \frac{x}{(1 - x)(1 + x)} = k \cdot \frac{y}{(1 - y)(1 + y)} \] where \(k = e^C\). ### Step 7: Final Form Rearranging gives us the final relationship: \[ x(1 - y)(1 + y) = k \cdot y(1 - x)(1 + x) \]

To solve the differential equation \((x - y^2 x)dx = (y - x^2 y)dy\), we will follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ (x - y^2 x)dx = (y - x^2 y)dy \] We can factor out \(x\) from the left side and \(y\) from the right side: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.4|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.5|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.2|6 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

(x-y^2x)dx=(y-x^2y)dy

(x-y^(2)x)dx+(y-x^(2)y)dy=0 Solve the differential equation.

Solve (x+y)^(2)(dy)/(dx)=a^(2)

Solve: (x+y)^(2)(dy)/(dx)=a^(2)

Solve 2ye^(x/y)dx+(y-2xe^(x/y))dy=0

Solve (1+x^2)dy=y(x-y)dx

Solve: (x-y)^2(dy)/(dx)=a^2

Solve: (x^(2)-yx^(2))dy+(y^(2)+x^(2)y^(2))dx=0

Solve: (x-y)^2(dy)/(dx)=1

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^(2)+2y^(2)+(y^(4))/(x^(2))