Home
Class 12
MATHS
Solve sec^(2)x tany dx+sec^(2)y tanx dy=...

Solve `sec^(2)x tany dx+sec^(2)y tanx dy=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0 \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ \sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0 \] We can rearrange this to isolate \( dx \) and \( dy \): \[ \sec^2 x \tan y \, dx = -\sec^2 y \tan x \, dy \] This can be rewritten as: \[ \frac{dx}{dy} = -\frac{\sec^2 y \tan x}{\sec^2 x \tan y} \] ### Step 2: Separating Variables We can separate the variables \( x \) and \( y \): \[ \frac{\sec^2 x \tan y}{\tan x} \, dx + \frac{\sec^2 y}{\tan y} \, dy = 0 \] This means we can express it as: \[ \frac{\sec^2 x}{\tan x} \, dx + \frac{\sec^2 y}{\tan y} \, dy = 0 \] ### Step 3: Integrating Both Sides Now, we integrate both sides: \[ \int \frac{\sec^2 x}{\tan x} \, dx + \int \frac{\sec^2 y}{\tan y} \, dy = 0 \] The integral of \( \frac{\sec^2 x}{\tan x} \) is \( \log |\tan x| \), and similarly for \( y \): \[ \log |\tan x| + \log |\tan y| = C \] where \( C \) is a constant of integration. ### Step 4: Simplifying the Result Using the properties of logarithms, we can combine the logs: \[ \log |\tan x \tan y| = C \] Exponentiating both sides gives: \[ |\tan x \tan y| = e^C \] Let \( k = e^C \), so we have: \[ \tan x \tan y = k \] ### Final Answer Thus, the solution to the differential equation is: \[ \tan x \tan y = C \] where \( C \) is a constant. ---

To solve the differential equation \( \sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0 \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ \sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0 \] We can rearrange this to isolate \( dx \) and \( dy \): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.4|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.5|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.2|6 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

Solve sec^(2)xtan y dx+sec^(2) y tan x dy=0 .

Solve the differential equation : sec^(2)x tan y dx + sec^(2) y tan x dy = 0

sec^(2)x tany dx + sec^(2)y tan x dy = dy =0

Solve (dx)/x = tany dy

Solution of the differential equation tan y.sec^(2) x dx + tan x. sec^(2)y dy = 0 is

int tanx sec^(2)x*dx

Find the general solution of each of the following differential equations: 3e^(x)tany dx +(1-e^(x))sec^(2)y dy=0

Solve the differential equation e^(x) tan y dx + (1-e^(x))sec^(2) y dy = 0

sec^(2) y tan x dy + sec^(2) x tan y dx = 0 , " when " x =y = pi/4