Home
Class 12
MATHS
If a function 'f' satisfies the relation...

If a function 'f' satisfies the relation `f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R` and `f(0)=1=f^(')(0)`. Then find `f(x)`.

Text Solution

Verified by Experts

The correct Answer is:
`f(x) = e^(e^(x)-1)`

We have `f(x)f^('')(x)-f^(')(x)^(2)=0`
Divide by `f(x)f^(')(x)`, we get
`(f^('')(x))/(f^(')(x))-1=(f^(')(x))/(f(x))`
Integrating both sides, we get ,
`log_(e)f^(')(x)-x=log_(e)f(x)+C`
Since, `f(0)=1=f^(')(0),C=0`
`therefore log_(e)f^(')(x)-log_(e)f(x)=x`
`rArr (log_(e)) f^(')(x)/(f(x))=e^(x)`
Integrating both sides, we get
`log_(e)f(x)=e^(x)+C`
Using `f(0)=1`, we have `C=-1`
`therefore f(x)=e^(e^(x))-1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.4|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.5|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.2|6 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then Number of roots of the equation f(x)=e^(x) is

If f((x+2y)/(3))=(f(x)+2f(y))/(3)AA x,y in R and f'(0)=1,f(0)=2 then find f(x) .

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

If f satisfies the relation f(x+y)+f(x-y)=2f(x)f(y)AA x,y in K and f(0)!=0; then f(10)-f(-10)-

Function f satisfies the relation f(x)+2f((1)/(1-x))=x AA x in R-{1,0} then f(2) is equal to

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AA x,y in R and f(0)!=0 ,then f(x) is an even function f(x) is an odd function If f(2)=a, then f(-2)=a If f(4)=b, then f(-4)=-b

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

If function f satisfies the relation f(x)*f'(-x)=f(-x)*f'(x) for all x and f(0)=3, and if f(3)=3, then the value of f(-3) is

Let f(x) be a function which satisfies the relation f(x+1)+f(2x+2)+f(1-x)+f(2+x)=x+1 AA x in R then value of [f(0)] is