Home
Class 12
MATHS
x(dy)/(dx)=y(logy-logx+1)...

`x(dy)/(dx)=y(logy-logx+1)`

Text Solution

Verified by Experts

The correct Answer is:
`y=xe^(cx), c gt 0`

`x(dy//dx)=y(logy-logx+1)`
or `(dy)/(dx)=y/x[logy/x+1]`
Putting `y=vx`, we get `(dy)/(dx)=v+x(dv)/(dx)`
and the given equation transforms to
`v+x(dv)/(dx)=v[logv+1]`
or `x(dv)/(dx)=vlogv`
or `int(dv)/(dx)=vlogv`
or `int(dv)/(vlogv)=int(dx)/x`
or `loglogv=logx+logc, c gt 0`
or `cx=log(y//x)`
or `y=xe^(cx), c gt 0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.5|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.6|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.3|9 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

If x(dy)/(dx)=y(log y -logx+1), then the solution of the equation is

x(dy)/(dx)=y(logy-logx), where y=vx

Solve the differential equation x*(dy)/(dx)-y=logx .

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

Solve: xlogx(dy)/(dx)+y=2logx

Integrating factor of the differential equation (x.logx)(dy)/(dx)+y=2logx is

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).