Home
Class 12
MATHS
(dy)/(dx)+xsin2y=x^(3)cos^(2)y...

`(dy)/(dx)+xsin2y=x^(3)cos^(2)y`

Text Solution

Verified by Experts

The correct Answer is:
`e^(x^(2))tany=1/2e^(x^(2))(x^(2)-1)+c`

The given equation can be expressed as
`sec^(2)y(dy)/(dx)+2xtany=x^(3)`
Put `tany=z`, so that `sec^(2)y(dy)/(dx)=(dz)/(dx)`
Given equation transforms to `(dz)/(dx) +2xz+x^(3)`, which is linear in z.
`I.F. = e^(2intxdx)=e^(x^(2))`
Therefore, solution is given by
`ze^(x^(2))=intx^(3)e^(x^(2))dx+c`
or `tanye^(x^(2))=1/2e^(x^(2))(x^(2)-1)+c` (substitute for `x^(2)=t` and then integrate by parts)
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.8|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.9|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.6|7 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx)+x sin2y=x^(3)cos^(2)y

Solve the equation (dy)/(dx)+x sin2y=x^(3)cos^(2)y

Solve: (dy)/(dx)+xsin2y=x^3cos^2y

The solution of the differential equation (dy)/(dx)+(sin2y)/(x)=x^(3)cos^(2)y

Solve (dy)/(dx) + x sin 2y = x^(3) cos^(2) y

Solution of differential equation sin y*(dy)/(dx)=(1)/(x)cos y=x^(4)cos^(2)y is

Solution of differential equation sin y*(dy)/(dx)+(1)/(x)cos y=x^(4)cos^(2)y is

x(dy)/(dx)-y+xsin(y/x)=0

Find (dy)/(dx) , when: xsin2y=ycos2x