Home
Class 12
MATHS
(dy)/(dx) + (xy)/(1-x^(2))=xsqrt(y)...

`(dy)/(dx) + (xy)/(1-x^(2))=xsqrt(y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ \frac{dy}{dx} + \frac{xy}{1 - x^2} = x\sqrt{y} \] we will follow these steps: ### Step 1: Rearranging the Equation First, we will rearrange the equation to isolate the terms involving \(y\) on one side: \[ \frac{dy}{dx} = x\sqrt{y} - \frac{xy}{1 - x^2} \] ### Step 2: Dividing by \(\sqrt{y}\) Next, we divide the entire equation by \(\sqrt{y}\): \[ \frac{1}{\sqrt{y}} \frac{dy}{dx} + \frac{xy}{(1 - x^2)\sqrt{y}} = x \] This can be rewritten as: \[ \frac{1}{\sqrt{y}} \frac{dy}{dx} + \frac{x\sqrt{y}}{1 - x^2} = x \] ### Step 3: Substituting \(v = \sqrt{y}\) Let \(v = \sqrt{y}\). Then, \(y = v^2\) and \(\frac{dy}{dx} = 2v\frac{dv}{dx}\). Substituting this into the equation gives: \[ \frac{2v}{v} \frac{dv}{dx} + \frac{xv}{1 - x^2} = x \] This simplifies to: \[ 2 \frac{dv}{dx} + \frac{xv}{1 - x^2} = x \] ### Step 4: Rearranging the Equation Now, we can rearrange this into the standard linear form: \[ \frac{dv}{dx} + \frac{x}{2(1 - x^2)}v = \frac{x}{2} \] ### Step 5: Identifying \(p\) and \(q\) Here, we identify \(p\) and \(q\): - \(p = \frac{x}{2(1 - x^2)}\) - \(q = \frac{x}{2}\) ### Step 6: Finding the Integrating Factor The integrating factor \(I\) is given by: \[ I = e^{\int p \, dx} = e^{\int \frac{x}{2(1 - x^2)} \, dx} \] To compute this integral, we can use substitution. Let \(u = 1 - x^2\), then \(du = -2x \, dx\), and we have: \[ \int \frac{x}{2(1 - x^2)} \, dx = -\frac{1}{4} \ln |1 - x^2| + C \] Thus, the integrating factor becomes: \[ I = e^{-\frac{1}{4} \ln |1 - x^2|} = |1 - x^2|^{-\frac{1}{4}} \] ### Step 7: Multiplying the Equation by the Integrating Factor Now, we multiply the entire differential equation by the integrating factor: \[ |1 - x^2|^{-\frac{1}{4}} \left( \frac{dv}{dx} + \frac{x}{2(1 - x^2)}v \right) = |1 - x^2|^{-\frac{1}{4}} \cdot \frac{x}{2} \] ### Step 8: Integrating Both Sides Now we integrate both sides: \[ \int \left( |1 - x^2|^{-\frac{1}{4}} \frac{dv}{dx} + |1 - x^2|^{-\frac{1}{4}} \frac{x}{2(1 - x^2)} v \right) dx = \int |1 - x^2|^{-\frac{1}{4}} \cdot \frac{x}{2} dx \] ### Step 9: Solving the Integral The left-hand side can be solved as: \[ \frac{d}{dx} \left( |1 - x^2|^{-\frac{1}{4}} v \right) \] The right-hand side will require integration techniques, which will yield a function of \(x\) plus a constant. ### Step 10: Back Substituting for \(y\) Finally, we substitute back \(v = \sqrt{y}\) to find \(y\) in terms of \(x\).

To solve the differential equation \[ \frac{dy}{dx} + \frac{xy}{1 - x^2} = x\sqrt{y} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.8|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.9|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.6|7 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

(dy)/(dx)=(xy+y)/(xy+x)

(dy)/(dx)=(x^2y+y)/(xy^2+x)

(a) dy/dx = (xy)/(x^2+y^2)

(dy)/(dx)=(x^(2)-y^(2))/(xy)

(dy)/(dx)+(xy+y)/(xy+x)=0

(dy)/(dx)=(y^(2)-x)/(xy+y)

ysqrt(1-x^(2))+xsqrt(1-y^(2))=1,"show that "(dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

The first integral of (dy)/(dx)((d^(2)y)/(dx^(2)))-x^(2)y((dy)/(dx))=xy^(2) will be