Home
Class 12
MATHS
(dy)/(dx)=(x^(3)-2xtan^(-1)y)(1+y^(2))...

`(dy)/(dx)=(x^(3)-2xtan^(-1)y)(1+y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \(\frac{dy}{dx} = (x^3 - 2x \tan^{-1} y)(1 + y^2)\), we will follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ \frac{dy}{dx} = (x^3 - 2x \tan^{-1} y)(1 + y^2) \] We can divide both sides by \(1 + y^2\): \[ \frac{1}{1 + y^2} \frac{dy}{dx} = x^3 - 2x \tan^{-1} y \] ### Step 2: Substitute \(z = \tan^{-1} y\) Let \(z = \tan^{-1} y\). Then, the derivative \(\frac{dy}{dx}\) can be expressed in terms of \(z\): \[ \frac{dz}{dx} = \frac{1}{1 + y^2} \frac{dy}{dx} \] Thus, we can rewrite the equation as: \[ \frac{dz}{dx} = z + 2x z = x^3 \] This simplifies to: \[ \frac{dz}{dx} + 2xz = x^3 \] ### Step 3: Identify the Linear Differential Equation This is a linear first-order differential equation in the standard form: \[ \frac{dz}{dx} + P(x)z = Q(x) \] where \(P(x) = 2x\) and \(Q(x) = x^3\). ### Step 4: Find the Integrating Factor The integrating factor \(I(x)\) is given by: \[ I(x) = e^{\int P(x) \, dx} = e^{\int 2x \, dx} = e^{x^2} \] ### Step 5: Multiply the Equation by the Integrating Factor Multiply the entire differential equation by the integrating factor: \[ e^{x^2} \frac{dz}{dx} + 2x e^{x^2} z = x^3 e^{x^2} \] ### Step 6: Rewrite the Left Side as a Derivative The left side can be rewritten as: \[ \frac{d}{dx}(e^{x^2} z) = x^3 e^{x^2} \] ### Step 7: Integrate Both Sides Now, integrate both sides: \[ \int \frac{d}{dx}(e^{x^2} z) \, dx = \int x^3 e^{x^2} \, dx \] The left side simplifies to: \[ e^{x^2} z = \int x^3 e^{x^2} \, dx \] ### Step 8: Solve the Right Side Integral To solve \(\int x^3 e^{x^2} \, dx\), we can use integration by parts or substitution. Let \(u = x^2\), then \(du = 2x \, dx\) or \(dx = \frac{du}{2x}\). The integral becomes: \[ \int x^3 e^{x^2} \, dx = \frac{1}{2} \int u e^u \, du \] Using integration by parts: \[ \int u e^u \, du = u e^u - \int e^u \, du = u e^u - e^u + C \] Thus, \[ \int x^3 e^{x^2} \, dx = \frac{1}{2} (x^2 e^{x^2} - e^{x^2}) + C \] ### Step 9: Substitute Back Substituting back, we have: \[ e^{x^2} z = \frac{1}{2} (x^2 e^{x^2} - e^{x^2}) + C \] Dividing through by \(e^{x^2}\): \[ z = \frac{1}{2} (x^2 - 1) + Ce^{-x^2} \] ### Step 10: Substitute Back for \(y\) Recall that \(z = \tan^{-1} y\), so: \[ \tan^{-1} y = \frac{1}{2} (x^2 - 1) + Ce^{-x^2} \] Finally, taking the tangent of both sides gives us: \[ y = \tan\left(\frac{1}{2} (x^2 - 1) + Ce^{-x^2}\right) \] ### Final Solution Thus, the solution to the differential equation is: \[ y = \tan\left(\frac{1}{2} (x^2 - 1) + Ce^{-x^2}\right) \]

To solve the differential equation \(\frac{dy}{dx} = (x^3 - 2x \tan^{-1} y)(1 + y^2)\), we will follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ \frac{dy}{dx} = (x^3 - 2x \tan^{-1} y)(1 + y^2) \] We can divide both sides by \(1 + y^2\): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.8|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.9|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.6|7 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

Solve the equation (dy)/(dx)=(x^(3)-2x tan^(-1)y)(1+y^(2))

If y=f(x)+(1)/(y) , then (dy)/(dx)=(y^(2)f'(x))/(1+y^(2))

The family of curves represented by (dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1) and the family represented by (dy)/(dx)+(y^(2)+y+1)/(x^(2)+x+1)=0

If (dy)/(dx)=(2^(x+y)-2^(x))/(2^(y)),y(0)=1 then y(1) is equal to

If x(dy)/(dx)=x^(2)+y-2, y(1)=1 , then y(2) equals ………………..

(dy)/(dx)=2((y+2)^(2))/((x+y-1)^(2))

The solution of differential equation x^(2)=1+((x)/(y))^(-1)(dy)/(dx)+(((x)/(y))^(-2)((dy)/(dx))^(2))/(2!)+(((x)/(y))^(-3)((dy)/(dx))^(3))/(3!)

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

The solution of differential equation x^(2)=1 + (x/y)^(-1) (dy)/(dx) + ((x/y)^(-2)((dy)/(dx))^(2))/(2)+.....