Home
Class 12
MATHS
(dy)/(dx)-(tanx)/(1+x)e^(x) secy...

`(dy)/(dx)-(tanx)/(1+x)e^(x) secy`

Text Solution

Verified by Experts

The correct Answer is:
`siny=(e^(x)+c)(x+1)`

We have `(dy)/(dx)-(tany)/(1+x)=(1+x)e^(x)secy`
`therefore cosy(dy)/(dx)+(-siny)1/(1+x)=e^(x)(1+x)`…………(1)
Put `siny=y rArr cosy(dy)(dx)=(dv)/(dx)`
`therefore (1)` reduces to
`(dv)/(dx)+(-1/(1+x))v=e^(x)(1+x)`
I.F. `=e^(-1/(1+x)dx)=1/(1+x)`
`therefore` Solution is
`v.1/(x+1)=int1/(x+1)e^(x)(1+x)+c`
`rArr siny=(e^(x)+c)(x+1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.8|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.9|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise 10.6|7 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

dy/dx +tany/(1+x) = (1+x)e^x secy

The solution of the differential equation x^(3)(dy)/(dx)+4x^(2) tany=e^(x) secy satisfying y(1)=0 , is

(dy)/(dx)=(e^(2x)+1)/(e^(x))

"If "y=(tanx)^(cotx)+(cotx)^(tanx)",prove that "(dy)/(dx)=(tanx)^(cotx)."cosec"^(2)x(1-logtanx)+(cotx)^(tanx).sec^(2)x[log(cotx)-1].

(x-y)(1-(dy)/(dx))=e^(x)

The solution the differential equation ((dy)/(dx))^(2)-((dy)/(dx))(e^(x)+e^(-x))+1=0 is

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

Solve the equation (dy)/(dx)+(1)/(x)=(e^(y))/(x^(2))