Home
Class 12
MATHS
Let y(x) be a function satisfying (d^(2)...

Let `y(x)` be a function satisfying `(d^(2)y)/(dx^(2))-(dy)/(dx)+e^(2x)=0`, y(0)= and `y^(')(0)=1`. If maximum value of `y(x)` is `y(alpha)`, then integral part of `2alpha` is……………..

Text Solution

Verified by Experts

The correct Answer is:
1

We have `(d^(2)y)/(dx^(2))-(dy)/(dx)+e^(2x)=0`
Put `(dy)/(dx)=t`
`therefore (dt)/(dx) -t=-e^(2x)`, which is linear differential equation
`rArr` solution is `te^(-x)=-inte^(2x)e^(-x)dx+c`
`rArr (dy)/(dx) e^(-x)=-e^(x)+c`
`rArr y^(')(0)=1 rArr c=2`
`therefore y=2e^(x)-e^(2x)/2+c^(')`
`therefore y(x) = 2e^(x)- e^(2x)/2+1/2`
`y(x) le5/2` for `x=log_(2)2`
So, `[2alpha]=[log_(e)4]=1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Advanced Previous Year|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Matrix Match Type|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

(d^(2)y)/(dx^(2))=(1)/(1+x^(2)) whenx =0,y=0 and (dy)/(dx)=0

If y=cot x show that (d^(2)y)/(dx^(2))+2y(dy)/(dx)=0

If y=x^(x), prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

Let y=f (x) be a real valued function satisfying x (dy)/(dx) =x ^(2) +y-2, f (1)=1, then :

If y=ae^(2x)+be^(-x), show that (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0

If y=x^(2)e^(x),"show that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2(x+1)e^(x)=0

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0