Home
Class 12
MATHS
Solution of the differential equation ...

Solution of the differential equation
`cosxdy=y(sinx-y)dx, 0ltxlt(pi)/(2)`is

A

`tanx=(secx+c)y`

B

`secx=(tanx+c)y`

C

`ysec x=tanx+c`

D

`ytanx =secx+c`

Text Solution

Verified by Experts

The correct Answer is:
B

`cosxdy=y(sinx-y)dx`
`rArr (dy)/(dx)=ytanx-y^(2)secx`
`rArr 1/y^(2)(dy)/(dx)-1/ytanx=-secx`
Let `1/y=t`
`therefore -1/y^(2)(dy)/(dx)=(dt)/(dx)`
`rArr -(dt)/(dx) -t tanx=-secx`
`rArr-(dt)/(dx)+(tanx)t=secx`
I.F. `=e^(int(tanxdx))=secx`
The solution is
t(I.F.) = `int(I.F.)secxdx`
`rArr 1/ysecx=tanx+c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Advanced Previous Year|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Single Correct Answer Type|37 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Exercise (Numerical)|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

Solution of the differential equation cosxdy=y(sinx-y)dx, 0 lt x lt pi/2 is (A) tanx=(secx+c)y (B) secx=(tanx+c)y (C) ysecx=tanx+c (D) ytanx=secx+c

The solution of differential equation cos x dy = y (sin x - y ) dx, 0 lt x lt pi //2 is

Solution of the differential equation y dx+(x-y^(2))dy=0 is

Solution of the differential equation sinx(dy)/(dx)+1+sinx=0 is

The solution of the differential equation x+y(dy)/(dx)=2y is