Home
Class 12
MATHS
The function y=f(x) is the solution o...

The function `y=f(x)` is the solution of the differential equation `(dy)/(dx)+(x y)/(x^2-1)=(x^4+2x)/(sqrt(1-x^2))` in `(-1,1)` satisfying `f(0)=0.` Then `int_((sqrt(3))/2)^((sqrt(3))/2)f(x)dx` is (a) `( b ) (c) (d)pi/( e )3( f ) (g)-( h )(( i )sqrt(( j )3( k ))( l ))/( m )2( n ) (o) (p)` (q) (b) `( r ) (s) (t)pi/( u )3( v ) (w)-( x )(( y )sqrt(( z )3( a a ))( b b ))/( c c )4( d d ) (ee) (ff)` (gg) (c) `( d ) (e) (f)pi/( g )6( h ) (i)-( j )(( k )sqrt(( l )3( m ))( n ))/( o )4( p ) (q) (r)` (s) (d) `( t ) (u) (v)pi/( w )6( x ) (y)-( z )(( a a )sqrt(( b b )3( c c ))( d d ))/( e e )2( f f ) (gg) (hh)` (ii)

A

`pi/3-sqrt(3)/2`

B

`pi/3-sqrt(3)/4`

C

`pi/6-sqrt(3)/4`

D

`pi/6-sqrt(3)/2`

Text Solution

Verified by Experts

The correct Answer is:
B

`(dy)/(dx) + x/(x^(2)-1)y=(x^(4)+2x)/sqrt(1-x^(2))`
This is a linear differential equation.
`I.F. =e^(intx/(x^(2)-1)dx)`
`e^(1/2"ln "|x^(2)-1|)=sqrt(1-x^(2))` (`therefore x in (-1,1))`
Therefore, solution is:
`ysqrt(1-x^(2))=int(x(x^(3)+2))/sqrt(1-x^(2)).sqrt(1-x^(2))dx`
or `ysqrt(1-x^(2))=int(x^(4)+2x)dx=x^(5)/5+x^(2)+C`
Since, `f(0)=0,C=0`
`therefore f(x) sqrt(1-x^(2))=x^(5)/5+x^(2)`
`rArr f(x) = x^(5)/(5sqrt(1-x^(2))+x^(2)/sqrt(1-x^(2))`
`therefore int_(-sqrt(3//2))^(sqrt(3)/2) f(x)dx= int_(sqrt(3)/2)^(sqrt(3)/2) (x^(5)/(5sqrt(1-x^(2))+x^(2)/sqrt(1-x^(2))))dx`
`=2int_(0)^(sqrt(3)//2)(x^(2)/sqrt(1-x^(2)))dx`
`rArr 2int_(0)^(pi//3) sin^(2)theta(d)theta`
`=2int_(0)^(pi//3)(1-cos2theta)/(2)(d)theta`
`=2[theta/2-(sin2theta)/4]_(0)^(pi//3)`
`=2(pi/6) -2(sqrt(3))/8 = pi/3-sqrt(3)/4`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Single Correct Answer Type|37 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos

Similar Questions

Explore conceptually related problems

The function y=f(x) is the solution of the differential equation (dy)/(dx)+(xy)/(x^(2)-1)=(x^(4)+2x)/(sqrt(1-x^(2)))in(-1,1) satisfying f(0)=0. Then int_((sqrt(3))/(2))^((sqrt(3))/(2))f(x)dx is

The fx^n y=f(n) is the sol of diff eq^n (dy)/(dx)+(xy)/(x^2-1)=(x^4+2x)/sqrt(1-x^2) in (-1,1) satisfying f(0)=0 then int_(-sqrt3/2)^(sqrt3/2) f(n)ndx is

The function y=f(x) is the solution of the differential equation [dy]/[dx]+[xy]/[x^2-1]=[x^4+2x]/sqrt[1-x^2] in (-1, 1), satisfying f(0)=0. Then int_[-sqrt3/2]^[sqrt3/2] f(x)dx is (A) pi/3 - sqrt3/2 (B) pi/3 - sqrt3/4 (C) pi/6 - sqrt3/4 (D) pi/6 - sqrt3/2

Let a solution y=y(x) of the differential equation x sqrt(x^(2)-1)dy-y sqrt(y^(2)-1)dx=0 satisfy y(2)=(2)/(sqrt(3))

If y(x) satisfies the differential equation (dy)/(dx)=(x^(2)-2y)/(x) where y(1)=-2 then y(x) will pass through the poing (A) (0,sqrt(3))(B)(3,0)(C)(sqrt(3),0)(D)(0,3)

The solution of the differential equation sqrt(a+x)(dy)/(dy)+xy=0 is (A)y=Ae^((2)/(3)(2a-x)sqrt(a+x))(B)y=Ae^(-(2)/(3)(2a-x)sqrt(a+x))(C)y=Ae^((2)/(3)(2a+x)sqrt(x-a))(C)

" If "f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))" and "f(0)=0" Find the value of "f(sqrt(3))-ln(2+sqrt(3))

The solution for x of the equation int_(sqrt(2))^(x)(dt)/(t sqrt(t^(2)-1))=(pi)/(2) is: (A) 2(B)pi(C)(sqrt(3))/(2) (D) 2sqrt(2)