Home
Class 12
MATHS
Let f(x) be real valued and differentiab...

Let `f(x)` be real valued and differentiable function on `R` such that `f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y))` `f(0)` is equals a. b. c. d. none of these

A

odd function

B

even function

C

odd and even function simultaneously

D

neither even nor odd

Text Solution

Verified by Experts

The correct Answer is:
A

Putting x = y= 0, we get
`f(0)=(f(0)+f(0))/(1-[f(0)]^(2))`
`rArr" "f(0)[f^(2)(0)+1]=0rArr f(0)=0( "since "f^(2)(0) ne-1).`
Now putting `y=-x`, we get
`f(0)=(f(x)+f(-x))/(1-f(x).f(-x))`
`rArr" "f(x)+f(-x)=0`
`rArr" "f(-x)=-f(x)rArr f(x)` is an odd function.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE|Exercise Single Correct Answer Type|56 Videos
  • FUNCTIONS

    CENGAGE|Exercise Question Bank|30 Videos
  • FUNCTIONS

    CENGAGE|Exercise Question Bank|30 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE|Exercise DPP 3.4|19 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE|Exercise Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)f(y))f(0) is equals a.1 b.0 c.-1 d.none of these

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)*f(y))f(x) is Odd function Even function Odd and even function simultaneously Neither even nor odd

If f(x) be a differentiable function such that f(x+y)=f(x)+f(y) and f(1)=2 then f'(2) is equal to

If f is a real-valued differentiable function satisfying |f(x)-f(y)|<=(x-y)^(2),x,y in R and f(0)=0 ,then f(1) equals:

Let f(x) be a differentiable function satisfying f(y)f((x)/(y))=f(x)AA,x,y in R,y!=0 and f(1)!=0,f'(1)=3 then

Let f(x) be a differentiable function on x in R such that f(x+y)=f(x). F(y)" for all, "x,y . If f(0) ne 0, f(5)=12 and f'(0)=16 , then f'(5) is equal to