Home
Class 12
MATHS
Consider two function y=f(x) and y=g(x) ...

Consider two function `y=f(x) and y=g(x)` defined as
`f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):}`
`and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):}`
Let f be differentiable at x = 1 and g(x) be continuous at x = 3. If the roots of the quadratic equation `x^(2)+(a+b+c)alphax+49(k+kalpha)=0` are real distinct for all values of `alpha` then possible values of k will be

A

`k in (-1,0)`

B

`k in (oo,0)`

C

`k in (1,5)`

D

`kin (-1,1)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given two functions : `f(X)={{:(ax^(2)+b,,0lexle1),(bx+2b,, 1ltxle3),((a-1)x+2x-3,,3ltxle4):}`
and `g(x)={{:(cx+d,, 0le xle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,xlexle4):}`
Condition for continuity of `f(x):f(1^(-))=f(1)=f(1^(+))and f(3^(-))=f(3)=f(3^(+))`
`rArr" "a+b=3b and 5b=3a+2c-6`
`rArr" "a=2b and c=3-(b)/(2)`
condition for continuity of g(x),
`g(2)=g(2^(-))=g(2^(+))and g(3^(-))=g(3)=g(3^(+))`
`rArr" "2c+d=2a+3-c and 3a+3 -c =10+b`
`rArr" "3c+d-2a=3 and b+c -3a =-7`
Also `f'(x)={{:(2ax,,0ltxlt1),(b,,1ltxlt3),(a-1,,3ltxlt4):}andg'(x)={{:(c,,0ltxlt2),(a,,2ltxlt3),(2x,,3ltxlt4):}`
f is differentiable at x = 1 and g(x) is continues at x = 3.
i.e. a = 2v and 2a = b
Also `3a+3-c=10+b`
`rArr" "a=b=0 and c=-7`
`x^(2)-7alphax+49k (1+alpha)=0` has real and distinct roots for `AA alpha in R.`
`rArr" "49alpha^(2)-4(49k)(1+alpha)gt 0 AA alpha in R`
`rArr" "alpha^(2)-4kalpha-4k gt 0 AA alpha in R`
`rArr" "16k^(2)+16klt0`
`rArr" "k(k+1)lt0`
`" "kin (-1,0)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Solved Examples And Exercises|108 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Question Bank|22 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Multiple Correct Answer Type|9 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} lim_(xrarr2) (f(x))/(|g(x)|+1) exists and f is differentiable at x = 1. The value of limit will be

f(x)={(ae^x+be^(-x),-1lexle1),(cx^2,1lexle3),(2ax+c,3lexle4):} , f'(0)+f'(2)=

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

If f(x)={{:(3x^(2)+12x-1",",-1lexle2),(37-x",",2ltxle3):} , Then

Let f(x)={:{(x^(2)+4x",",-3lexle0),(-sinx",",0ltxle(pi)/(2)),(-cosx-1",",(pi)/(2)ltxlepi):} then

If 1,2,3 and 4 are the roots of the equation x^(4)+ax^(3)+bx^(2)+cx+d=0, then a+2b+c=

Let f(x)=x^(3)-x^(2)+x+1 and g(x)={("max "f(t) 0letlex 0lexle1),(3-x 1ltxle2):} then

The function f(x) Is defined as follows : f(x)={{:(x^(2)+ax+b" , "0lexlt2),(3x+2" , "2lexle4),(2ax+5b" , "4ltxle8):} . If f(x) is continuous on [0,8], find the values of 'a' and 'b'.