Home
Class 12
MATHS
Consider two function y=f(x) and y=g(x) ...

Consider two function `y=f(x) and y=g(x)` defined as
`f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):}`
`and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):}`
`lim_(xrarr2) (f(x))/(|g(x)|+1)` exists and f is differentiable at x = 1. The value of limit will be

A

`-2`

B

`-1`

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
C

Given two functions : `f(X)={{:(ax^(2)+b,,0lexle1),(bx+2b,, 1ltxle3),((a-1)x+2x-3,,3ltxle4):}`
and `g(x)={{:(cx+d,, 0le xle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,xlexle4):}`
Condition for continuity of `f(x):f(1^(-))=f(1)=f(1^(+))and f(3^(-))=f(3)=f(3^(+))`
`rArr" "a+b=3b and 5b=3a+2c-6`
`rArr" "a=2b and c=3-(b)/(2)`
condition for continuity of g(x),
`g(2)=g(2^(-))=g(2^(+))and g(3^(-))=g(3)=g(3^(+))`
`rArr" "2c+d=2a+3-c and 3a+3 -c =10+b`
`rArr" "3c+d-2a=3 and b+c -3a =-7`
Also `f'(x)={{:(2ax,,0ltxlt1),(b,,1ltxlt3),(a-1,,3ltxlt4):}andg'(x)={{:(c,,0ltxlt2),(a,,2ltxlt3),(2x,,3ltxlt4):}`
`LHL=underset(hrarr0)(lim)(f(2-h))/(|g(2-h)|+1)underset(hrarr0)(lim)(b(4-h))/(|(c(2-h)+d)|+1)`
`=(4b)/(|2c+d|+1)`
`RHL=underset(hrarr0)(lim)(f(2+h))/(|g(2+h)|+1)underset(hrarr0)(lim)(b(4+h))/(|(a(2+h)+3-c)|+1)`
`=(4b)/(|2a+3-c|+1)`
`because" f is differentiable at x = 1 i.e., a = b= 0"`
So, LHL = RHL = 0 `because` (it is given that limit exists)
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Solved Examples And Exercises|108 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Question Bank|22 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Multiple Correct Answer Type|9 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} Let f be differentiable at x = 1 and g(x) be continuous at x = 3. If the roots of the quadratic equation x^(2)+(a+b+c)alphax+49(k+kalpha)=0 are real distinct for all values of alpha then possible values of k will be

f(x)={(ae^x+be^(-x),-1lexle1),(cx^2,1lexle3),(2ax+c,3lexle4):} , f'(0)+f'(2)=

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

If f(x)={{:(3x^(2)+12x-1",",-1lexle2),(37-x",",2ltxle3):} , Then

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xrarr1)f(x).

f(x)={{:(1+x, if 0lexle2),(3-x if 2ltxle3) :} ,then the number of values of x at which the function fof is not differentiable is

Let f(x)={{:(-2",",-3lexle0),(x-2",",0ltxle3):}andg(x)=f(|x|)+|f(x)| What is the value of the differential coefficient of g(x) at x=-2?

If f(x) is defined as f(x){{:(x,0lexlt(1)/(2)),(0,x=(1)/(2)),(1-x,(1)/(2)ltxle1):} then evaluate : lim_(xrarr(1)/(2)) f(x)