Home
Class 12
MATHS
Let f:R rarr R, y=f(x), f(0)=0, f'(x) gt...

Let `f:R rarr R, y=f(x), f(0)=0, f'(x) gt0 and f''(x)gt0`. Three point `A(alpha, f(alpha)), B(beta,f(beta)), C(gamma, f(gamma)) on y=f(x)` such that `0lt alpha lt beta lt gamma.`
Which of the following is false ?

A

`alphaf(beta) gt beta(f(alpha))`

B

`alphaf(beta)lt beta f(alpha)`

C

`gamma f(beta)lt beta(f(gamma))`

D

`gamma (f(alpha))lt alpha f(gamma)`

Text Solution

Verified by Experts

The correct Answer is:
B

Consider `g(x)=(f(x))/(x)`
`g'(x)=(xf'(x)-f(x))/(x^(2))=(f'(x))/(x)(x-(f(x))/(f'(x)))`
`as (f'(x))/(x^(2))gt0`
Let `h(x)=x-(f(x))/(f'(x))`
`therefore" "h'(x)=(f'(x)^(2)-f(x)f''(x))/(f'(x)^(2))`
`=(f(x)f''(x))/(f'(x)^(2))gt0`
`therefore x-(f(x))/(f'(x))` is increasing function.

`x-(f(x))/(f'(x))gt0-(f(0))/(f'(0))=0`
`therefore" "g'(x)gt0`.
`therefore" "(f(gamma))/(gamma)gt(f(beta))/(beta)lt(f(alpha))/(alpha)`
`therefore" "B is false
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = ((x - gamma)(x - delta)) / ((x-alpha)(a-beta)) where, gamma < alpha < delta < beta , then which of the following is correct

f(alpha)=f'(alpha)=f''(alpha)=0,f(beta)=f'(beta)=f''(beta)=0 and f(x) is polynomial of degree 6, then

Knowledge Check

  • Let f:R rarr R, y=f(x), f(0)=0, f'(x) gt0 and f''(x)gt0 . Three point A(alpha, f(alpha)), B(beta,f(beta)), C(gamma, f(gamma)) on y=f(x) such that 0lt alpha lt beta lt gamma. Which of the following is true?

    A
    `gammaf(gamma+beta-alpha)gt (gamma+beta-alpha)f(gamma)`
    B
    gammaf(gamma+beta-alpha)lt (gamma+beta-alpha)f(gamma)`
    C
    `alphaf(gamma+beta-alpha)gt (gamma+beta-alpha)f(alpha)`
    D
    None of these
  • Let f'(x) gt0 and g'(x) lt 0 " for all " x in R Then

    A
    `f{g(x)gtf(g(X+1)}`
    B
    `f{g(x)gtf(g(X-1)}`
    C
    `g{f(x)gtg(f(X+1)}`
    D
    `g{f(x)gtg(f(X-1)}`
  • If f(c) lt 0 and f'(c) gt 0 , then at x = c , f (x) is -

    A
    maximum
    B
    minimum
    C
    neither maximum nor minimum
    D
    either maximum or minimum
  • Similar Questions

    Explore conceptually related problems

    Let int_(alpha)^( beta)(f(alpha+beta-x))/(f(x)+f(alpha+beta-x))dx=4 then

    Let f(x)=int_1^x(3^t)/(1+t^2)dx ,w h e r e x > 0. Then (a)for 0

    If for a function f(x),f'(a)=0,f"(a)=0,f'''(a)gt0, then at x=a,f(x) is

    Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisfy alpha lt beta gamma are the roots of f '(x)=0 then which of the following is/are correct ([.] denots greatest integer function) ?

    F(x)=x^(5)+log,(x+sqrt(1+x^(2))) , Then for all alpha, beta in R such that alpha+beta gt 0