Home
Class 12
MATHS
f'(sin^(2)x)lt f'(cos^(2)x) for x in...

`f'(sin^(2)x)lt f'(cos^(2)x)` for `x in`

A

`(-(pi)/(4),(pi)/(4))`

B

`(-(pi)/(2),-(pi)/(4))uu(pi)/(4),(pi)/(2))`

C

`(-(pi)/(4),0)uu(pi)/(4),(pi)/(2))`

D

`(-(pi)/(2),(pi)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
A

`f'(sin^(2)x)ltf'(cos^(2)x) rArr sin^(2)x lt cos^(2)x rArr tan^(2) x lt 1`
`rArr x in (-(pi)/(4),(pi)/(4))`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(cos^(2)x+sin^(4)x)/(sin^(2)x+cos^(4)x) for x in R then f(2016)=

If f(x)=(cos^(2)x+sin^(4)x)/(sin^(2)x+cos^(4)x) for x varepsilon R then f=

f(x)=sin^(2)x+cos ec^(2)x rArr

If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R , then f(2010)

If f(x)=(cos^(2)x+sin^(4)x)/(sin^(2)x+cos^(4)), for x in R, then f(2002) is equal to

If f(x) =(cos^2x +sin^4x)/(sin^2x +cos^4x) for x in R then f(2020) =

If f : R rarr R , f(x) = sin^(2) x + cos^(2) x , then f is

Let f(sin x)+2f(cos x)=3 for all x in R Fird f(x)

If f(x) is continuous at x=0 , where f(x)=(sin (pi cos^(2)x))/(x^(2)) , for x!=0 , then f(0)=