Home
Class 12
MATHS
lim(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3)...

`lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)]` is equal to

A

`(3)/(8)`

B

`(1)/(4)`

C

`(1)/(8)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit expression given in the question, we will break it down step by step. ### Step 1: Rewrite the Limit Expression We start with the limit expression: \[ \lim_{n \to \infty} \left[ \frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \ldots + \frac{1}{8n} \right] \] We can express this as: \[ \lim_{n \to \infty} \sum_{r=1}^{8n} \frac{n^2}{(n+r)^3} \] ### Step 2: Simplify the Terms Notice that for large \(n\), we can simplify the term \((n+r)^3\): \[ (n+r)^3 = n^3 \left(1 + \frac{r}{n}\right)^3 \] Thus, we can rewrite our expression: \[ \frac{n^2}{(n+r)^3} = \frac{n^2}{n^3 \left(1 + \frac{r}{n}\right)^3} = \frac{1}{n \left(1 + \frac{r}{n}\right)^3} \] ### Step 3: Rewrite the Sum Now, substituting this back into our sum, we get: \[ \lim_{n \to \infty} \sum_{r=1}^{8n} \frac{1}{n \left(1 + \frac{r}{n}\right)^3} \] This can be recognized as a Riemann sum for the function \(f(x) = \frac{1}{(1+x)^3}\) over the interval from \(0\) to \(8\) as \(n\) approaches infinity. ### Step 4: Convert to Integral As \(n\) approaches infinity, \(\frac{r}{n}\) approaches \(x\), and the sum becomes: \[ \int_0^8 \frac{1}{(1+x)^3} \, dx \] ### Step 5: Evaluate the Integral Now we need to evaluate the integral: \[ \int_0^8 \frac{1}{(1+x)^3} \, dx \] Using the substitution \(u = 1+x\), we have \(du = dx\) and the limits change from \(1\) to \(9\): \[ \int_1^9 \frac{1}{u^3} \, du \] This integral evaluates to: \[ \left[-\frac{1}{2u^2}\right]_1^9 = -\frac{1}{2(9^2)} + \frac{1}{2(1^2)} = -\frac{1}{162} + \frac{1}{2} \] Calculating this gives: \[ \frac{1}{2} - \frac{1}{162} = \frac{81}{162} - \frac{1}{162} = \frac{80}{162} = \frac{40}{81} \] ### Step 6: Final Result Thus, the limit evaluates to: \[ \lim_{n \to \infty} \left[ \frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \ldots + \frac{1}{8n} \right] = \frac{40}{81} \]

To solve the limit expression given in the question, we will break it down step by step. ### Step 1: Rewrite the Limit Expression We start with the limit expression: \[ \lim_{n \to \infty} \left[ \frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \ldots + \frac{1}{8n} \right] \] We can express this as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) [(1) / (n) + (n ^ (2)) / ((n + 1) ^ (3)) + (n ^ (2)) / ((n + 2) ^ (3)) + ...... + (1) / (8n)]

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

lim _(nrarroo)(1)/(n^(6)){(n+1)^(5)+(n+2)^(5)+...+(2n)^(5)}

lim_ (n rarr oo) (1) / (n) [(1) / (n + 1) + (2) / (n + 2) + ... + (3n) / (4n)]

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =

Lim_(nrarroo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to