Home
Class 12
MATHS
The value of lim(n rarroo) sum(r=1)^(n)(...

The value of `lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) ` is equal to

A

`2ln(sqrt2-1)`

B

`4 ln (sqrt2-1)`

C

`4 ln (sqrt2+1)`

D

`ln sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
C

`S=underset(nrarroo)(lim)sum_(r=1)^(n)(pi)/(n).(1)/(sin{(pi)/(4)+(pir)/(4n)})`
`" "=pi int_(0)^(1)(dx)/(sin((pi)/(4)x+(pi)/(4)))=4log_(e)(sqrt2-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n rarr oo)sum_(i=1)^(n)(i)/(n^2)sin((pi i^(2))/(n^(2))) is equal to

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

The value of lim_(n rarr oo)[{4sum_(r=0)^(n)(r+1)(r+2)(r+3)}^((1)/(4))-n] is

The value of the lim_(n rarr oo)tan{sum_(r=1)^(n)tan^(-1)((1)/(2r^(2)))}_( is equal to )