Home
Class 12
MATHS
lim(nrarroo) sum(k=1)^(n)(k^(1//a{n^(a-(...

`lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1))` is equal to

A

1

B

2

C

43467

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow a structured approach. The problem is: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{\frac{1}{a}} \left(n^{a - \frac{1}{a}} + k^{a - \frac{1}{a}}\right)}{n^{a + 1}} \] ### Step 1: Rewrite the expression We can rewrite the expression inside the limit for clarity: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{\frac{1}{a}} n^{a - \frac{1}{a}} + k^{\frac{1}{a}} k^{a - \frac{1}{a}}}{n^{a + 1}} \] ### Step 2: Factor out common terms Notice that we can factor out \( \frac{1}{n^{a + 1}} \): \[ = \lim_{n \to \infty} \frac{1}{n^{a + 1}} \sum_{k=1}^{n} \left( k^{\frac{1}{a}} n^{a - \frac{1}{a}} + k^{a} \right) \] ### Step 3: Split the sum We can split the summation into two parts: \[ = \lim_{n \to \infty} \frac{1}{n^{a + 1}} \left( n^{a - \frac{1}{a}} \sum_{k=1}^{n} k^{\frac{1}{a}} + \sum_{k=1}^{n} k^{a} \right) \] ### Step 4: Analyze the first sum The first sum can be approximated using the formula for the sum of powers: \[ \sum_{k=1}^{n} k^{\frac{1}{a}} \approx \frac{n^{\frac{1}{a} + 1}}{\frac{1}{a} + 1} \] ### Step 5: Analyze the second sum Similarly, for the second sum: \[ \sum_{k=1}^{n} k^{a} \approx \frac{n^{a + 1}}{a + 1} \] ### Step 6: Substitute back into the limit Substituting these approximations back into our limit gives: \[ = \lim_{n \to \infty} \frac{1}{n^{a + 1}} \left( n^{a - \frac{1}{a}} \cdot \frac{n^{\frac{1}{a} + 1}}{\frac{1}{a} + 1} + \frac{n^{a + 1}}{a + 1} \right) \] ### Step 7: Simplify the expression Now we simplify each term: 1. For the first term: \[ n^{a - \frac{1}{a}} \cdot \frac{n^{\frac{1}{a} + 1}}{\frac{1}{a} + 1} = \frac{n^{a + 1}}{\frac{1}{a} + 1} \] 2. For the second term: \[ \frac{n^{a + 1}}{a + 1} \] Combining these gives: \[ = \lim_{n \to \infty} \frac{n^{a + 1}}{n^{a + 1}} \left( \frac{1}{\frac{1}{a} + 1} + \frac{1}{a + 1} \right) \] ### Step 8: Evaluate the limit As \( n \to \infty \), the \( n^{a + 1} \) terms cancel out: \[ = \frac{1}{\frac{1}{a} + 1} + \frac{1}{a + 1} \] ### Step 9: Combine the fractions Finding a common denominator: \[ = \frac{(a + 1) + (1)}{(a + 1)(\frac{1}{a} + 1)} = \frac{a + 2}{(a + 1)(\frac{1 + a}{a})} = \frac{a(a + 2)}{(a + 1)(a + 1)} = \frac{a(a + 2)}{(a + 1)^2} \] ### Final Result Thus, the limit evaluates to: \[ \frac{a(a + 2)}{(a + 1)^2} \]

To solve the limit problem given, we will follow a structured approach. The problem is: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{\frac{1}{a}} \left(n^{a - \frac{1}{a}} + k^{a - \frac{1}{a}}\right)}{n^{a + 1}} \] ### Step 1: Rewrite the expression We can rewrite the expression inside the limit for clarity: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

The value of lim_(n rarr oo)sum_(k=1)^(n)(6^(k))/((3^(k)-2^(k))(3^(k+1)-2^(k+1))) is equal to

lim_ (n rarr oo) sum_ (k = 0) ^ (n) ((1) / (nC_ (k)))

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k ^ (2)) / (2 ^ (k))

Evaluate lim_(n rarr oo)sum_(k=1)^(n)quad (k)/(n^(2)+k^(2))

If S(n)=sum_(k=1)^(n)(k)/(k^(4)+(1)/(4)), then (221S(10))/(10) is equal to:

S= lim_(nrarroo) sum_(k=0)^n 1/sqrt(n^2 + k ^2)

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

lim_ (n rarr oo) [1 + sum_ (k = 1) ^ (n) (3) / (nCk)] ^ (n)