Home
Class 12
MATHS
The number of solution of the equation i...

The number of solution of the equation `int_(-2)^(1)|cos x|dx=0,0ltxlt(pi)/(2)`, is

A

0

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

`int_(-2)^(x)|cosx|dx=int_(-2)^(-pi//2)|cos x|dx+int_(-pi//2)^(x)|cos x|dx`
`" "=int_(-2)^(-pi//2)-cosxdx+int_(-pi//2)^(x)cosxdx`
`" "1-sin 2+sinx+1`
`therefore" "int_(-2)^(x)|cos x|dx=0`
`rArr" "-1sin2+sinx+1=0`
`rArr" "sinx=sin2-2lt-1`
`therefore" No solution in "(0,(pi)/(2)).`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation int_(-2)^(x) "cos x "dx = 0, 0 lt x lt (pi)/(2) is

int_(0)^( pi)|cos x|dx=2

int_(0)^(2 pi)|cos x|dx

The number of solution of equations sin2x+cos2x+sin x+cos x+1=0 in [0,2 pi]

int_(0)^(pi/2)(1+cos x)dx

Number of solution of the equation (d)/(dx)int_(cos x)^( sin x)(dt)/(1-t^(2))=2sqrt(2)in[0,pi] is

Number of solutions of the equation (1+x^(2))cos ecx-4cos^(2)x+1=0 if x in[-2 pi,2 pi], is

The number of solutions of equations sin2x+cos2x+sin x+cos x+1=0 in [0,2 pi] is