Home
Class 12
MATHS
int(0)^(1)e^(2x)e^(e^(x) dx =)...

`int_(0)^(1)e^(2x)e^(e^(x) ` dx =)

A

`e^(e)(2e-1)`

B

`e^(e)(e-1)`

C

`e^(2e)(e-1)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(0)^(1)e^(2x)e^(e^(x))dx`
Let `e^(x)=1`
`rArr" "I=int_(0)^(e)te^(t)dt=(te^(t)-e^(t))_(1)^(e)=e^(e)(e-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)x^2e^(2x)dx

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

6*int_(0)^(1)(e^(2x))/(1+e^(2x))dx

int_(0)^(1)x e^(x)dx=

int_(0)^(1)(e^(x))/((2+e^(x)))dx

int_(0)^(1)e^(e^(x))(1+xe^(x))dx

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

int_(0)^(1)(e^(-x))/(1+e^(-x))dx

int_(0)^(1)(e^(2x)-1)/(e^(2x)+1)dx=