Home
Class 12
MATHS
Let f(x)=lim( n to oo)(cosx)/(1+(tan^(-1...

Let `f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n))`. Then the value of `int_(o)^(oo)f(x)dx` is equal to

A

`cos (tan 1)`

B

`sin(tan1)`

C

`tan(tan1)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(0)^(tan1)f(x)dx+int_(tan1)^(oo)f(x)dx`
`=int_(0)^(tan1)cosxdx+0`
`=sin(tan1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n rarr oo)(cos x)/((1+tan^(-1)x)^(n)), then int_(0)^(oo)f(x)dx=

Let f(x)=lim_(n rarr oo)(sin x)^(2n)

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f(x)=lim_(n to oo) sinx/(1+(2 sin x)^(2n)) then f is discontinuous at

Let f:rarr R rarr(0,oo) be strictly increasing function such that lim_(x rarr oo)(f(7x))/(f(x))=1 .Then, the value of lim_(x rarr oo)[(f(5x))/(f(x))-1] is equal to

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is