Home
Class 12
MATHS
The value of difinite integral int(0)^(1...

The value of difinite integral `int_(0)^(1)=(dx)/(sqrt((x+1)^(3)(3x+1)))` equals

A

`sqrt2-1`

B

`tan.(pi)/(12)`

C

`tan.(5pi)/(12)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`I=int_(0)^(1)(dx)/((x+1)sqrt((x+1)(3(x+1)-2)))`
Put `x+1=(1)/(t)`
`therefore" "I=int_(1)^(1//2)(dt)/(sqrt(3-2t))=sqrt2-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(dx)/(3sqrt(x))

The value of the integral int_(0)^(3) (dx)/(sqrt(x+1)+sqrt(5x+1)) is

The value of the definte integrale int_(-1)^(1)(dx)/(1+x^(3)+sqrt(1+x^(6))) equals

The value ofdefinite integral int_(-2)^(2)(x^(3)-x+1)/(sqrt(4-x^(2)))dx

int_(0)^(1)(1)/(sqrt(3x+2))dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

The value of the integral int_(0)^(1)(x^(3))/(1+x^(8))dx is

int_(0)^(1)(dx)/((x+sqrt(x^(2)+1))^(3))=

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -