Home
Class 12
MATHS
The value of I=int(-1)^(1)(1+x)^(1//2)(1...

The value of `I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx` is

A

`pi`

B

`(pi)/(2)`

C

`2pi`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx`
`rArr" "I=int_(-1)^(1)(1-x)^(1//2)(1+x)^(3//2)dx`
`rArr" "2I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(1//2)[(1-x)+(1+1)]dx`
`rArr" "2I=2int_(-1)^(1)sqrt(1-x^(2))dx`
`rArr" "I=2int_(0)^(1)sqrt(1-x^(2))dx`
`=(pi)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

The value of int_(-1)^(1)(|x+2|)/(x+2)dx is

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

int_(-1)^(1) (1+x^(3))/(9-x^(2)) dx =

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

The value of int_(1)^(3)(dx)/(x(1+x^(2))) is

int_(-1)^(1)(x^(3)dx)/(x^(2)+1)

The value of int_(0)^(1) 4x^(3){(d^(2))/(dx^(2))(1-x^(2))^(5)}dx is