Home
Class 12
MATHS
int0^a log (cota+ tanx)dx where a in (0,...

`int_0^a log (cota+ tanx)dx` where `a in (0,pi/2)` is (A) `alnsina` (B) `-alnsina` (C) `-alncosa` (D) none of these

A

`a ln (sina)`

B

`-a ln (sina)`

C

`-a ln (cos a)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(0)^(a)ln(cot a +tanx)dx`
`=int_(0)^(a)ln((cos(a0x))/(sina cosx))dx" (1)"`
`therefore" "I=int_(0)^(a)ln((cosx)/(sina cos(a-x)))dx" (2)"` Adding (1) and (2) we get `2I=int_(0)^(a)ln((1)/(sin^(2)a))dx`
`=-2int_(1)^(a)ln(sina)dx`
`=-2aln(sina)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)log(cot a+tan x)dx where a in(0,(pi)/(2)) is (A) a ln sin a(B)-a ln sin a(C)-a ln cos a (D) none of these

The value of int_(0)^(a) log ( cot a + tan x) d x , where a in (0,pi//2) is equal to

int_0^(pi//2)log(tanx)dx

int_(0)^(pi//2) log (cotx ) dx=

int_0^pi tanx/(sinx+tanx)dx

int_0^pi (xtanx)/(secx+tanx)dx

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

int_(0)^(pi) x log sinx\ dx