Home
Class 12
MATHS
IF f(x+f(y))=f(x)+y AA x, y in R and f(0...

IF `f(x+f(y))=f(x)+y AA x, y in R and f(0)=1`, then `int_(0)^(10)f(10-x)dx` is equal to

A

1

B

10

C

`int_(0)^(1)f(x)dx`

D

`10int_(0)^(1)f(x)dx`

Text Solution

Verified by Experts

The correct Answer is:
D

Put y = 0 `rArrf(x+1)=f(x)`
Thus f(x) is periodic with period '1'
`therefore" "int_(0)^(10)f(10-x)dx`
`=int_(0)^(10)f(10-(10-x))dx`
`=int_(0)^(10)f(x)dx`
`=int_(0)^(10)f(x)dx`
`=10int_(0)^(1)f(x)dx`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x+y)+f(x-y)=2f(x)f(y)AA x,y in R and f(0)=k, then

f(x+f(y))=f(x)+y AA x,y in R and f(0)=1f(x+f(y))=f(x)+y AA x,y in R and f(0)=1 then prove that int_(0)^(2)f(2-x)dx=2int_(0)^(1)f(x)dx

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

If |f(x)-f(y)|<=2|x-y|^((3)/(2))AA x,y in R and f(0)=1 then value of int_(0)^(1)f^(2)(x)dx is equal to (a) 1 (b) 2 (c) sqrt(2)(d)4

If (x+f(y))=f(x)+y AA x,y in R and f(0)=1 then find the value of f(7).

Let f(x) be a real function not identically zero in z such the f(x+y^(z+1))=f(x)+(f(x))^(2+1),n in N and x,y in R. if f'(0)>=0 then 6int_(0)^(1)f(x)dx is equal to :

f((x)/(y))=f(x)-f(y)AA x,y in R^(+) and f(1)=1, then show that f(x)=In x

If f be decreasing continuous function satisfying f(x+y)=f(x)+f(y)-f(x)f(y)Yx,y varepsilon R,f'(0)=1 then int_(0)^(1)f(x)dx is

If f:R rarr R be a function such that f(x+2y)=f(x)+f(2y)+4xy, AA x,y and f(2) = 4 then, f(1)-f(0) is equal to