Home
Class 12
MATHS
u=int0^(pi/2)cos((2pi)/3sin^2x)dx and v=...

`u=int_0^(pi/2)cos((2pi)/3sin^2x)dx` and `v=int_0^(pi/2) cos(pi/3 sinx) dx`

A

2u = v

B

2u = 3v

C

u = y

D

u = 2v

Text Solution

Verified by Experts

The correct Answer is:
A

`u=int_(0)^(pi//2)cos((2pi)/(3)sin^(2)x)dx`
`u=int_(0)^(pi//2)cos((2pi)/(3)cos^(2)x)dx`
`rArr" "2u=int_(0)^(pi//2)[cos((2pi)/(3)sin^(2)x)+cos((2pi)/(3).cos^(2)x)]dx`
`rArr" "2u=int_(0)^(pi//2)2cos.(pi)/(3).cos((pi)/(3)cos2x)dx`
`rArr" "u=(1)/(2)int_(0)^(pi)cos((pi)/(3)cost)dt" [Put 2x = t]"`
`=int_(0)^(pi//2)cos((pi)/(3)cost)dt`
Promotional Banner

Similar Questions

Explore conceptually related problems

u,=int_(0)^((pi)/(2))cos((2 pi)/(3)sin^(2)x)dx and v,=int_(0)^((pi)/(2))cos((pi)/(3)sin x)dx

Suppose _((pi)/(2))cos(pi sin^(2)x)dx and I_(2)int_(0)^(3)cos(2 pi sin^(2)x)dx and I_(3)=int_(0)^((pi)/(2))cos(pi sin x)dx, then

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

int_0^(pi//2) (cos x)/(3 cos x+sin x) dx

int_0^(pi/2) cos^3x e^(log_e sinx) dx=

If A=int_((rho)/(2))^((pi)/(2))cos(sin x)dxB=int_(0)^((pi)/(2))sin(cos x)dx and C=int_(0)^((pi)/(2))cos(x)dx

int_0^(pi//2) x^2 cos 2x dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

int_(0)^(pi) cos 2x . Log (sinx) dx