Home
Class 12
MATHS
int(1)^(2013)[(x-1)(x-2)...(x-2013)]dx...

`int_(1)^(2013)[(x-1)(x-2)...(x-2013)]dx`

A

`(2013)^(2)`

B

`(2012)(2013)(2014)`

C

`2013!`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
D

`I=int_(1)^(2013)(x-1)(x-2)(x-3)...(x-2013)dx`
Using `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`
`int_(1)^(2013)(2013-x)(2012-x)...(1-x)=-I`
`rArr" "2I=0rArr I=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(3)(x-1)(x-2)(x-3)dx=

int_(1)^(2)(log x)/(x)dx=

int_(1)^(2)(x^(2)-(1)/(x)+1)dx

int_(1)^(2)(1)/(x^(2)-2x+2)dx =

int_(1)^(2)(1)/(x^(2)-2x+2)dx =

Real root of the equation (x-1)^(2013)+(x-2)^(2013)+(x-3)^(2013)+.......+(x-2013)^(2013)=0 digits is :

int_(-1)^(1)(x^(2)-1)/(x^(2)+1)dx=

int_(1)^(2)(dx)/((x+1)sqrt(x^(2)-1))