Home
Class 12
MATHS
int(-pi//4)^(pi//4) \ (e^x sec^2 \ dx)/(...

`int_(-pi//4)^(pi//4) \ (e^x sec^2 \ dx)/(e^(2x)-1)` is equal to (i)`0` (ii)`2` (iii)`e` (iv)none of these

A

0

B

2

C

e

D

2e

Text Solution

Verified by Experts

The correct Answer is:
A

Let `int_(-(pi)/(4))^((pi)/(4))(e^(x)sec^(2)xdx)/(e^(2x)-1)`
If `f(x)=(e^(x)sec^(2)x)/(e^(2x)-1)`
`therefore" "f(-x)=(e^(-x)sec^(2)x)/(e^(-2x)_1)`
`=(e^(x)sec^(2)x)/(1-e^(2x))`
`=(e^(x)sec^(2)x)/(e^(2x)-1)`
`=-f(x)`
`therefore` f(x) is an odd functions.
`therefore" I=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi//4)^(pi//4)(e^(x)x sin x)/(e^(2x)-1)dx=

int_(-pi//4)^(pi//4)(e^(x)(x^(3)sinx))/(e^(2x)-1)dx equals

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

The value of int_(pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

Evaluate: int_(-pi/4)^( pi/4)(sec^(2)x)/(1+e^(x))dx

int_(pi//4)^(pi//2)(e^(cot x))/(sin^(2)x)dx=

int_(0)^(pi//4) (sec^(2)x)/((1+tan x)(2+tan x))dx is equal to

The value of int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal to

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to