Home
Class 12
MATHS
If A(x+y)=A(x)A(y) and A(0) ne 0 and B(...

If `A(x+y)=A(x)A(y) and A(0) ne 0 and B(x)=(A(x))/(1+(A(x))^(2))`, then

A

`int_(-2010)^(2010)B(x)dx=int_(0)^(2011)B(x)dx`

B

`int_(-2010)^(2011)B(x)dx=int_(0)^(2010)B(x)dx+int_(0)^(2011)B(x)dx`

C

`int_(-2010)^(2011)B(x)dx=0`

D

`int_(-2010)^(2010)(2B(-x)-B(x))dx=2int_(0)^(2010)B(x)dx`

Text Solution

Verified by Experts

The correct Answer is:
B:D

`A(x+y)=A(x)A(y)`
`rArr" "A(0+0)=A(0)A(0)`
`rArr" "A(0)=1`
Put `y=-x,` we get
`A(0)=A(x)A(-x)" (i)"`
`B(-x)=(A(-x))/(1+(A(-x))^(2))`
`=((1)/(A(x)))/(1+(1)/((A(x))^(2)))`
`=(A(x))/(1+(A(x))^(2))`
= B(x)
Thus, B(x) is even.
`int_(-2010)^(2011)B(x)dx=int_(-2010)^(2010)B(x)dx+int_(2010)^(2011)B(x)dx`
`=2int_(0)^(2010)B(x)dx+int_(2010)^(2011)B(x)dx`
`=int_(0)^(2010)B(x)dx+int_(0)^(2011)B(x)dx`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x+y) =f (x) f(y) for all x,y and f (0) ne 0, and F (x) =(f(x))/(1+(f (x))^(2)) then:

(x^(2) +1)/x, x ne 0

If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i , then (x, y) equals

Let f :R to R be a continous and differentiable function such that f (x+y ) =f (x). F(y)AA x, y, f(x) ne 0 and f (0 )=1 and f '(0) =2. Let f (xy) =g (x). G (y) AA x, y and g'(1)=2.g (1) ne =0 The number of values of x, where f (x) g(x):

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

If (2)/(x) + (3)/(y) = (9)/( xy ) and (4)/(x) + (9)/(y) = (21)/(xy) where x ne 0 and y ne 0, that what is the value of x + y ?

If sets A and B defines as A={(x,y),y=(1)/(x),0 ne x in R} and B={(x,y)}:y=-x, x in R then