Home
Class 12
MATHS
if int(log2->x) (du)/(e^u-1)^(1/2) =pi/6...

if `int_(log2->x) (du)/(e^u-1)^(1/2) =pi/6` then `e^x=`

A

1

B

2

C

4

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C

`int_(log2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6)`
`"Put "e^(u)-1=t^(2)`
`rArr" "int_(1)^(sqrt(e^(x)-1))(2t)/(1+t^(2))dt=(pi)/(6)`
`rArr" "2(tan^(-1)t)_(1)^(sqrt(e^(x)-1))=(pi)/(6)`
`rArr" "tan^(-1)sqrt(e^(x)-1)-(pi)/(4)=(pi)/(12)`
`rArr" "sqrt(e^(x)-1)=tan.(pi)/(3)rArr sqrt(e^(x)-1)=sqrt3rArr e^(x)=4`
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(log" "2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6) , then e^(x) is equal to

if int_(log2rarr x)(du)/((e^(u)-1)^((1)/(2)))=(pi)/(6) then e^(x)=

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

If int_(log2)^(x)(dx)/(sqrt(e^(x)-1))=(pi)/(6), then x is equalto 4 (b) ln8(c)ln4(d) none of these

The solution of the equation int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2) is given by x=

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

If int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=