Home
Class 12
MATHS
The value of int(e)^(pi^(2))[log(pi)x]d(...

The value of `int_(e)^(pi^(2))[log_(pi)x]d(log_(e)x)` (where [.] denotes greatest integer function) is

A

`2log_(e)pi`

B

`log_(e)pi`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

Let `log_(e)x=t`
`I=int_(1)^(log_(e)pi^(2))[log_(pi)e^(t)]dt`
`rArr" "I=int_(1)^(log_(e)pi^(2))[tlog_(pi)e]dt=int_(1)^(log_(e)pi)0dt+int_(log_(e)pi)^(2log_(e)pi)1dt=log_(e)pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(e^(6)) [(log x)/(3)] dx (where [.] denotes the greatest integer function) is (e^(a)-e^(b)) then the value of (a)/(b) is

The value of int_(e)^( pi^(2))[log_(pi)x]backslash d(log_(e)x) is

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of int_(0)^((pi)/(3))[sqrt(3)tan x]dx( where [.] denotes the greatest integer function.) is:

The value of int_(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] denotes greatest integer function , is

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(e)[log_(pi)x]dx is (where [.] denotes the greatest integer function)

The value of int_(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx, where [*] denotes greatest integer function,is

The value of int_(-g)^(1)[x[1+cos((pi x)/(2))]+1]dx where [.] denotes greatest integer function is