Home
Class 12
MATHS
The value of (int(0)^(1)(dt)/(sqrt(1-t^(...

The value of `(int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt)` is

A

1

B

2

C

`2sqrt3`

D

`sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
D

Put `t^(2)=sin theta` in numerator (Nr.)
`therefore" "I_(1)=(1)/(2)int_(0)^((pi)/(2))(1)/(sqrt(sintheta))d theta`
Put `t^(2)=tan alpha` in denominator
`therefore" "I_(2)=int_(0)^(1)(1)/(sqrt(1+t^(4)))dt=(1)/(2)int_(0)^((pi)/(4))(sqrt2)/(sqrt(sin2 alpha))dalpha=(1)/(sqrt2)I_(1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

int_(0)^(1)t^(2)sqrt(1-t)*dt

I=int_(0)^(-1)(t ln t)/(sqrt(1-t^(2)))dt=

" (a) "int(dt)/(sqrt(1-t^(2)))

The value of int_(1//e)^(tanx)(t)/(1+t^(2))dt+int_(1//e)^(cotx)(1)/(t(1+t^(2)))dt , where x in (pi//6, pi//3 ), is equal to :

int_(0)^(9)[sqrt(t)]dt

Evaluate int(t^(2))/(sqrt(1-t^(2)))dt

Evaluate int_(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

The value of int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt is