Home
Class 12
MATHS
Let a and b be two positive real numbers...

Let a and b be two positive real numbers. Then the value of `int_(a)^(b)(e^(x//a)-e^(b//x))/(x)dx` is

A

0

B

ab

C

1/ab

D

`e^(ab)`

Text Solution

Verified by Experts

The correct Answer is:
A

`I=int_(a)^(b)(e^(x//a)-e^(b//a))/(x)dx`
Put `(x)/(a)=(b)/(y)`
`rArr" "I=int_(b)^(a)(e^((b)/(y))-e^((y)/(a)))/((ab)/(y))(-(ab)/(y^(2)))dy`
`" "=int_(a)^(b)(b^(b//x)-e^(x//a))/(x)dx=-I`
`rArr" "2I=0`
`rArr" "I=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of int a^(x)e^(x)dx

Write a value of int a^(x)e^(x)dx

The value of int_(a)^(b)(|x|)/(x)dx,a

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

For any real number x,the value of int_(0)^(x)[x]dx is

The value of int sqrt((e^(x)-1)/(e^(x)+1))dx

If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

The integral int_(a)^(b)(e^((x^(2))/(a^(2)))-e^((b^(2))/(x^(2))))/(x)dx is