Home
Class 12
MATHS
The value of int(0)^(oo)(logx)/(a^(2)+x^...

The value of `int_(0)^(oo)(logx)/(a^(2)+x^(2))dx` is

A

`(2piloga)/(a)`

B

`(pi log a)/(2a)`

C

`pi loga`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\infty} \frac{\log x}{a^2 + x^2} \, dx \), we will use a substitution method and properties of integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\infty} \frac{\log x}{a^2 + x^2} \, dx \] ### Step 2: Use Substitution We will use the substitution \( x = \frac{a^2}{y} \). Then, we have: \[ dx = -\frac{a^2}{y^2} \, dy \] ### Step 3: Change the Limits When \( x \to 0 \), \( y \to \infty \) and when \( x \to \infty \), \( y \to 0 \). Thus, the limits change from \( 0 \) to \( \infty \) to \( \infty \) to \( 0 \). ### Step 4: Substitute in the Integral Substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int_{\infty}^{0} \frac{\log\left(\frac{a^2}{y}\right)}{a^2 + \left(\frac{a^2}{y}\right)^2} \left(-\frac{a^2}{y^2}\right) \, dy \] ### Step 5: Simplify the Integral This becomes: \[ I = \int_{0}^{\infty} \frac{\log\left(\frac{a^2}{y}\right)}{a^2 + \frac{a^4}{y^2}} \cdot \frac{a^2}{y^2} \, dy \] \[ = \int_{0}^{\infty} \frac{\log a^2 - \log y}{a^2 + \frac{a^4}{y^2}} \cdot \frac{a^2}{y^2} \, dy \] \[ = \int_{0}^{\infty} \frac{a^2 \log a^2}{y^2 (a^2 + \frac{a^4}{y^2})} \, dy - \int_{0}^{\infty} \frac{a^2 \log y}{y^2 (a^2 + \frac{a^4}{y^2})} \, dy \] ### Step 6: Factor out Constants The first integral can be simplified as: \[ = \log a^2 \int_{0}^{\infty} \frac{a^2}{y^2 (a^2 + \frac{a^4}{y^2})} \, dy \] The second integral is similar to the original integral \( I \). ### Step 7: Evaluate the First Integral The first integral can be evaluated using the known result: \[ \int_{0}^{\infty} \frac{1}{a^2 + x^2} \, dx = \frac{\pi}{2a} \] Thus, we can express the first integral in terms of \( a \). ### Step 8: Combine Results Combining both integrals gives: \[ I = \frac{1}{2} \cdot \frac{\pi}{a} \log a^2 - I \] \[ 2I = \frac{\pi}{a} \log a^2 \] \[ I = \frac{\pi}{2a} \log a^2 \] \[ = \frac{\pi \log a}{a} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi \log a}{2a} \]

To solve the integral \( I = \int_{0}^{\infty} \frac{\log x}{a^2 + x^2} \, dx \), we will use a substitution method and properties of integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\infty} \frac{\log x}{a^2 + x^2} \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(oo) (dx)/(a^(2)+x^(2)) is equal to

Find the value of int_(0)^(oo)(xlogx)/((1+x^(2))^(2))dx .

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

The value of int_(0)^(oo)(x)/((1+x)(x^(2)+1))dx is

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

The value of int_(0)^(oo) (dx)/((x^(2)+4)(x^(2)+9) ) is

int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx

Let A=int_(0)^(oo)(log x)/(1+x^(3))dx Then find the value of int_(0)^(oo)(x log x)/(1+x^(3))dx in terms of A

int_(0)^(oo)(1)/(3+x^(2))dx