Home
Class 12
MATHS
int(1//3)^(3)(1)/(x)log(e)(|(x+x^(2)-1)/...

`int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx` is equal to

A

`(8)/(3)`

B

`-(8)/(3)`

C

0

D

3

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int_(1//3)^(2)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx`
Let `x=(1)/(t)rArr dx =-(1)/(t^(2))dt`
`rArr" "I=-int_(3)^(1//3)tlog_(e)(|((1)/(t)+(1)/(t^(2))-1)/((1)/(t)-(1)/(t^(2))+1)|)(1)/(t^(2))dt`
`" "=int_(1//3)^(3)(1)/(t)log_(e)(|(t-t^(2)+1)/(t+t^(2)-1)|)dt`
`" "=-int_(1//3)^(3)(1)/(x)log_(2)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx`
`rArr" "I=-IrArr I=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(x(1+log x)^(2))dx is equal to

int(x-3)/((x-1)^(3)).e^(x)dx is equal to

int_(1)^(x) (log(x^(2)))/(x) dx is equal to

" 1."int x^(2)e^(x^(3))dx" is equal to "

int x ^(x)((ln x )^(2) -1/x) dx is equal to:

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(1)^(2) (log_(e) x)/(x^(2)) dx