Home
Class 12
MATHS
If I(n)=int(0)^(1)(1+x+x^(2)+....+x^(n-1...

If `I_(n)=int_(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n-2)+(2n-1)x^(n-1))dx,n in N,` then the value of `sqrt(I_(9))` is

A

3

B

6

C

9

D

12

Text Solution

Verified by Experts

The correct Answer is:
C

Let `x=t^(2)`
`I_(n)=int_(0)^(1)2t(1+t^(2)+t^(4)+....+t^(2n-2))(1+3t^(2)+5t^(4)+.....+(2n-3)t^(2n-4)+(2n-1)t^(2n-n))dt`
`=int_(0)^(1)2(t+t^(3)+t^(5)+.....+t^(2n-1))(1+3t^(2)+5t^(4)+....+(2n-3)t^(2n-4)+(2n-1)t^(2n-2))dt`
Let `y=t+t^(3)+t^(5)+....+t^(2n-1)`
`therefore" "I_(n)=2int_(0)^(n)tdt=n^(2)`
`therefore" "sqrt(I_(9))=sqrt(9^(2))=9`
Promotional Banner

Similar Questions

Explore conceptually related problems

If ((243)^((n)/(5))3^(2n+1))/(9^(n)3^(n-1))=x, then the value of x is

If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is

int(2x^(n-1))/(x^(n)+3)dx

n + (n-1) x + (n-2) x ^ (2) + ....... + 2x ^ (n-2) + x ^ (n-1)

If I_(n)=int_(0)^(1)(dx)/((1+x^(2))^(n));n in N, then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_(n)

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx and V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx,n in N and if (V_(n))/(U_(n))=1024, then the value of n is

Let S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n , then

Prove that int(dx)/((1+x^(2))^(n))=(1)/(2(n-1))[(x)/((1+x^(2))^(n-1))+(2n-3)int(dx)/((1+x^(2))^(n-1))],n in N Hence,computer the value of int cos^(4)xdx