Home
Class 12
MATHS
Let I(1)=int(0)^(oo)(x^(2)sqrtx)/((1+x)^...

Let `I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx`, then

A

`I_(1)=2I_(2)`

B

`I_(2)=2I_(1)`

C

`I_(1)=I_(2)`

D

`I_(1)=-I_(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

`I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx`
Let `x=(1)/(t)`
`rArr" "I_(1)=int_(oo)^(0)((1)/(t^(2)sqrtt))/((1+(1)/(t))^(6))(-(1)/(t^(2))dt)`
`rArr" "I_(1)=int_(0)^(oo)(tsqrtt)/((1+t)^(6))dt=I_(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx

int_(1)^(oo)(dx)/(x^(2))

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(oo)(dx)/((1+x)sqrt(x))

int_(0)^(oo)(log(1+x^(2)))/(1+x^(2))dx=

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)((tan^(-1)x)/(x(1+x^(2))))dx