Home
Class 12
MATHS
int(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) the...

`int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2)` then

A

`int_(+0)^(oo)e^(-2x^(2))dx=(sqrtpi)/(2sqrt2)`

B

`int_(0)^(oo)xe^(-x^(2))dx=(1)/(2)`

C

`int_(0)^(oo)x^(2)e^(-x^(2))dx=(sqrtpi)/(4)`

D

`int_(0)^(oo)x^(2)e^(-x^(2))dx=(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\infty} e^{-x^2} \, dx \) and show that it equals \( \frac{\sqrt{\pi}}{2} \), we can follow these steps: ### Step 1: Recognize the integral The integral \( I = \int_{0}^{\infty} e^{-x^2} \, dx \) is a well-known Gaussian integral. **Hint:** This integral is often encountered in probability and statistics, particularly in relation to the normal distribution. ### Step 2: Use substitution To evaluate the integral, we can use a substitution. Let's set \( x = \frac{t}{\sqrt{2}} \). Then, we differentiate to find \( dx \): \[ dx = \frac{1}{\sqrt{2}} \, dt \] **Hint:** When performing substitutions, remember to change the limits of integration accordingly. ### Step 3: Change the limits of integration When \( x = 0 \), \( t = 0 \). When \( x \to \infty \), \( t \to \infty \). Thus, the limits remain the same. **Hint:** Always check how the limits of integration change when you perform a substitution. ### Step 4: Substitute into the integral Now substitute \( x \) and \( dx \) into the integral: \[ I = \int_{0}^{\infty} e^{-\left(\frac{t}{\sqrt{2}}\right)^2} \cdot \frac{1}{\sqrt{2}} \, dt \] This simplifies to: \[ I = \frac{1}{\sqrt{2}} \int_{0}^{\infty} e^{-\frac{t^2}{2}} \, dt \] **Hint:** Simplifying the exponent can make the integral easier to evaluate. ### Step 5: Recognize the new integral The integral \( \int_{0}^{\infty} e^{-\frac{t^2}{2}} \, dt \) can be evaluated using the known result for the Gaussian integral: \[ \int_{-\infty}^{\infty} e^{-u^2} \, du = \sqrt{\pi} \] However, we need to adjust for the factor of \( \frac{1}{2} \) in the exponent. **Hint:** The integral from \( 0 \) to \( \infty \) is half of the integral from \( -\infty \) to \( \infty \). ### Step 6: Evaluate the integral We can relate our integral to the known result: \[ \int_{0}^{\infty} e^{-\frac{t^2}{2}} \, dt = \sqrt{2} \cdot \frac{\sqrt{\pi}}{2} \] Thus, substituting back, we have: \[ I = \frac{1}{\sqrt{2}} \cdot \sqrt{2} \cdot \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{2} \] **Hint:** Always keep track of constants when substituting and simplifying. ### Conclusion Therefore, we conclude that: \[ \int_{0}^{\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2} \]

To solve the integral \( I = \int_{0}^{\infty} e^{-x^2} \, dx \) and show that it equals \( \frac{\sqrt{\pi}}{2} \), we can follow these steps: ### Step 1: Recognize the integral The integral \( I = \int_{0}^{\infty} e^{-x^2} \, dx \) is a well-known Gaussian integral. **Hint:** This integral is often encountered in probability and statistics, particularly in relation to the normal distribution. ### Step 2: Use substitution ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(oo)e^(-x^(2))dx=(sqrt(pi))/(2), then int_(0)^(oo)e^(-ax^(2))dx where a>0 is: (A)(sqrt(pi))/(2) (B) (sqrt(pi))/(2a)(C)2(sqrt(pi))/(a) (D) (1)/(2)(sqrt((pi)/(a)))

If int_(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int_(0)^(oo) e^(-ax^(2)) dx, a gt0 , s

int_(0)^(oo)x^(3)e^(-x^(2))dx=

int_(1)^(oo)x^(-(3/2))dx

If int_ (0)^(oo) e^(-x^(2)) dx = (sqrt (pi))/(2), and int_ (0)^(oo) e^(-ax^(2) ) dx, a> 0 is (i) (sqrt (pi))/(2) (ii) (sqrt (pi))/(2a) (iii) 2 (sqrt (pi))/(a) (iv) (1)/(2) sqrt ((pi)/(a))

int_(0)^(2)e^(-x)dx

int_(0)^(oo)(1)/(3+x^(2))dx

int_(0)^(oo)(a^(-x)-b^(-x))dx=

int_(0)^(oo)(a^(-x)-b^(-x))dx

Given that int_(-oo)^( oo)e^(-x^(2))dx=sqrt(pi) and f(t)=int_(-oo)^( oo)e^(-tx^(2))dx(t>0), then 2|(f'(t))/(sqrt(pi))times t^(3/2)| is