Home
Class 12
MATHS
Let f(x)=int(0)^(x)(e^(t))/(t)dt(xgt0), ...

Let `f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0),`
then `e^(-a)[f(x+1)-f(1+a)]=`

A

`int_(0)^(x)=(e^(t))/((t+a))dt`

B

`int_(1)^(x)(e^(t))/(t+a)dt`

C

`e^(-a)int_(1+a)^(x+a)(e^(t))/(t)dt`

D

`int_(0)^(x)(e^(t-a))/((t+a))dt`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`e^(-a)[f(x+a)-f(1+a)]`
`" "=e^(-a)[int_(0)^(x+a)(e^(t).dt)/(t)-int_(0)^(1+a)(e^(t))/(t)dt]`
`" "=e^(-a)[int_(0)^(x+a)(e^(t).dt)/(t)+int_(1+a)^(0)(e^(t))/(t)dt]`
`" "=e^(-a)[int_(1+a)^(x+a)(d^t.dt)/(t)]`
`" "=e^(-a)int_(1)^(x)(e^(y+a))/(y+a).dy" "("Put, t"=y+a, dt=dy)`
`" "=int_(1)^(x)(e^(y).dy)/(t+a)`
`" "=int_(1)^(x)(e^(t).dt)/(t+a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_0^x (sint)/(t)dt,xgt0, then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(0)^(x)cos((t^(2)+2t+1)/(5))dt0>x>2 then f(x)

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

Let f(x)=int_(0)^(1)|x-t|dt, then

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

Let f(x)=int_(0)^(oo)(e^(-xt))/(1+t^(2))dt, then value of prime 'f''((1)/(4))+f((1)/(4))=

Let f:(0,oo)vec R be given by f(x)=int_((1)/(x))^(x)(e^(-(t+(1)/(t)))dt)/(t), then (a)f(x) is monotonically increasing on [1,oo)(b)f(x) is monotonically decreasing on (1,oo)(b)f(x) is an odd function of x on R