Home
Class 12
MATHS
If int(0)^(x^(2)(1+x))f(t)dt=x, then the...

If `int_(0)^(x^(2)(1+x))f(t)dt=x`, then the value of f(2) is.

A

`1//2`

B

`1//3`

C

`1//4`

D

`1//5`

Text Solution

Verified by Experts

The correct Answer is:
D

Differentiating both sides w.r.t. x, then
`f(x^(2)(1+x))xx(2x+3x^(2))=1`
At `x=1rArr f(2)=(1)/(5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of 25f(2) must be_________.

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If int_(0)^(x^(2)(1+x))f(t)dt = x then find f(2)

If int_(0)^(x^(3)(1+x))f(t)dt=x then f(2) is equal to

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is