Home
Class 12
MATHS
If f(x)=int(0)^(x)log(0.5)((2t-8)/(t-2))...

If `f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt`, then the interval in which f(x) is increasing is

A

`(-oo,2)uu(6,oo)`

B

`(4,6)`

C

`(-oo,2)uu(4,oo)`

D

(2,6)

Text Solution

Verified by Experts

The correct Answer is:
B

`f'(x)gt0rArrlog_(0.5)((2x-8)/(x-2))gt0`
`rArr" "(2x-8)/(x-2)lt1`
`rArr" "(2x-8)/(x-2)-1lt0`
`rArr" "x in (2,6)`
Also `(2x-8)/(x-2) gt0 rArr" "x lt 0 or x gt 4`
`rArr" "x in (4,6)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(x)^(x+1) (e^-(t^2)) dt, then the interval in which f(x) is decreasing is

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then find the interval in which f(x) increases.

If f(x)=int_(0)^(x)tf(t)dt+2, then

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

If f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt , then discuss whether even or odd?

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(x)=int_(0)^(2)te^(-t)dt then

If f(x)=1+3int_(0)^(x)t^(2)f(t)dt, then the number of solution of f(x)=x^(2)+1 is

Let f(x)=int_(0)^(x)cos((t^(2)+2t+1)/(5))dt0>x>2 then f(x)