Home
Class 12
MATHS
If a, b and c are real numbers, then the...

If a, b and c are real numbers, then the value of `lim_(trarr0) ln((1)/(t)int_(0)^(t)(1+asinbx)^(c//x)dx)` equals

A

abc

B

`(ab)/(c)`

C

`(bc)/(a)`

D

`(ca)/(b)`

Text Solution

Verified by Experts

The correct Answer is:
A

`L=underset(trarr0)(lim)log_(e)((1)/(t)int_(0)^(t)(1+a sinbx)^(c//x)dx)((0)/(0)"form")`
`=loe_(e)(underset(trarr0)(lim)(int_(0)^(t)(1+a sin bx)^(c//x)dx)/(t))" (Using L' Hopital Rule)"`
`=loe_(e)(underset(trarr0)(lim)((1+a sin bt)^(c//x)/(1))`
`=log_(e)[(underset(trarr0)(lim)(1+asin bt)^((1)/(a sin bt)))^((ac sin bt)/(1))]`
`=log_(e)e^(abc)`
`=abc`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b and c are real numbers then the value of lim_(t rarr0)ln((1)/(t)int_(0)^(t)(1+a sin bx)^((c)/(x))dx) equals

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

The value of Lt_(t rarr0)(1)/(t)(int_(0)^( pi)tan(t sin x)dx) equals

The value of lim_(t rarr0)(ln(cos(sin t)))/(t^(2)) is

The value of lim_(a rarr oo)(1)/(a^(2))int_(0)^(a)ln(1+e^(x))dx equals

The value of (lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt) is equal to

int_(0)^(1)log sin((pi)/(2)x)dx equals

The value of lim_(xrarr0)(1)/(x^(3)) int_(0)^(x)(tln(1+t))/(t^(4)+4) dt

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

int_(0)^(1)(log(1)/(x))^(n-1)dx equals